
Unsupervised Motion Retargeting for Human-Robot Imitation HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA

Unsupervised Motion Retargeting for Human-Robot Imitation
Louis Annabi

U2IS, ENSTA Paris, IP Paris
Palaiseau, France

louis.annabi@gmail.com

Ziqi Ma
U2IS, ENSTA Paris, IP Paris

Palaiseau, France
ziqi.ma@ensta-paris.fr

Sao Mai Nguyen
U2IS, ENSTA Paris, IP Paris

IMT Atlantique, Lab-STICC, UMR
CNRS 6285
France

nguyensmai@gmail.com

ABSTRACT
This early-stage research work aims to improve online human-
robot imitation by translating sequences of joint positions from the
domain of human motions to a domain of motions achievable by a
given robot, thus constrained by its embodiment. Leveraging the
generalization capabilities of deep learning methods, we address
this problem by proposing an encoder-decoder neural network
model performing domain-to-domain translation. In order to train
such a model, one could use pairs of associated robot and human
motions. Though, such paired data is extremely rare in practice,
and tedious to collect. Therefore, we turn towards deep learning
methods for unpaired domain-to-domain translation, that we adapt
in order to perform human-robot imitation.

CCS CONCEPTS
• Computer systems organization→ Robotics.
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1 INTRODUCTION
In many human-robot interaction scenarios, robots need to be able
to imitate human motions [3, 20]. For example, imitating human
motions can be used to reproduce human demonstrated motions
[9, 23], for coordination purposes in human-robot collaboration
[26], or even to provide feedback to patients in physical rehabil-
itation scenarios [4]. This imitation is not a simple one-to-one
mapping from human joint angle to motor angle, as the embodi-
ment of humans and robots differ in sizes, proportions, velocities,
forces, dynamics. Finding this relational mapping is referred to as
the correspondence problem [19]. While the correspondence problem
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between a single demonstrator and an imitator has been addressed
in the human-robot interaction and the machine learning liter-
ature, the correspondence problem is the more acute when the
robot needs to interact with different people. To our knowledge,
a humanoid robot solving the correspondence problem of whole
body movements from different demonstrators carrying out several
tasks has not been addressed. While humanoid robots and different
demonstrators can have the same skeletal structure as humans,
their bone length and joint amplitudes vary from person to person.
One difficulty in addressing this problem is the lack of complete
dataset with all demonstrators carrying out the same set of tasks
and synchronized and paired with a robot execution of the same
set of tasks.

Figure 1: The steps of the human-robot imitation process: (1)
pose estimation outputs from a video from performer A a
sequence of joint positions 𝑥𝐴, (2) motion retargeting trans-
lates joint positions 𝑥𝐴 into joint positions 𝑥𝐵 for performer
B, (3) robot control sends the low level control.

We separate the motion imitation process in three steps: pose
estimation, motion retargeting, and robot control, as represented
in figure 1. Pose estimation algorithms predict a sequence of skele-
ton joint positions from the human demonstrator given a sensor
input. The motion retargeting step translates this sequence of joint
positions towards a domain of joint positions achievable by the
robot, i.e. from the human embodiment to the robot embodiment
spaces. Finally, one can use these sequences of joint positions as
targets for motor control (e.g. dynamic movement). While there is a
flourishing literature on pose estimation, few works have addressed
the question of motion retargeting for human-robot imitation. In
this work, we will examine the correspondance problem in terms
of bone length and flexibility, while considering that the skeletal
structure is identical.
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2 RELATEDWORK
2.1 Whole-body imitation
Indeed, research in whole-body imitation of a human by a hu-
manoid robot have proposed offline or real-time optimizations to
solve inverse kinematics for the end effectors [11, 12, 18]. In [12]
and [18], the authors used mainly inverse kinematics on each of the
kinematic chains for static pose mapping. [11] solved the geometric
and dynamic differences of the correspondence problem [19] by
scaling by a predefined constant for the difference in length for
body parts, and by optimizing inverse kinematics. In summary, they
only focused on the end effectors as the key parts to be imitated,
and supposed the retargeting is only about the end-effector po-
sitions. However, while this might be true for manipulation and
task-oriented movements, in other cases, such as for rehabilitation
exercises as in [7], the focus might shift on the intermediate joints.
In order to take into consideration all the joints, another method
is to use joint orientations as features that should be invariant to
the motion performer. However, by simply copying the joint ori-
entations, we may not properly translate meaningful features of
the source motion. For instance, if the source motion contains a
contact between the two hands (e.g. clapping hands), and if the
target skeleton has shorter forearms than the source skeleton, the
hands in the translated motion would not touch. These limitations
have encouraged us to explore the use of deep learning methods
for motion retargeting.

2.2 Motion retargeting
As retargeting can be seen as translating a motion from the human
embodiment domain to the robot embodiment domain, it entails
extracting the main characteristics from a motion that would be
common to human and robot movements, or in other words, finding
a common representation between both movements. Domain-to-
domain translation is fundamentally a disentanglement problem,
where some information content of the source data must be kept
while some domain-specific content has to be transformed. For im-
ages, typically object positions and features should be kept, while
appearance and style is transformed. [8] proposed shared latent
variables as a common representation between movements from
a robot and humans with different joint flexibility. However their
algorithm does not handle more morphology differences, and needs
to be retrained for each exercise : the same model can not be applied
to all movements. In the case of motion retargeting, we would like
to disentangle the motion features from the identity of the subject
performing the motion. Thus, we hypothesize that a deep learning
encoder-decoder architecture may capture such relevant features
during the encoding, and properly translate them in the recon-
structed motion during the decoding. In order to have a retargeting
method that can work with different sources (e.g. different human
subjects) and targets (e.g. different robots), we make the encoder
invariant with regard to the source skeleton, and the decoder con-
ditioned on the target skeleton. Training such an architecture with
paired source and target motions would constitute an ideal super-
vised learning scenario, but in practice such data is very difficult to
collect. One could obtain paired motions in circumstances where
different subjects perform the same task (e.g. from action recog-
nition data sets), however it is difficult to ensure that the task is

completed with the same motion by different subjects. For instance,
for two motions labeled as "picking up a phone", the hand picking
up the phone (left or right), the speed of the motion, the initial
position of the phone, the pose of the subject (sitting or standing)
are features that may not be consistent.

The other option is to work with unpaired data. In this case, we
have access to one dataset of motions for the source skeleton and
one dataset of motions for the target skeleton, without any known
correspondence. Models working with unpaired data have been
proposed in the field of image-to-image translation [30], which we
try to adapt in this work to perform unpaired cross-domain motion
translation between several source and target embodiments.

In order to train a domain-to domain translation without paired
data, the CycleGAN method [30] leverages a cycle-consistency
constraint together with adversarial training. The cycle-consistency
criterion ensures that translating back the prediction in the source
space yields the initial source image (or motion in our case). The
adversarial training constrains the prediction to belong to the target
domain. In the UNIT method presented in [14], the authors use a
similar approach with an encoder-decoder architecture. Using the
assumption that both source and target domains share a same latent
space, they build a cycle-consistency criterion in the latent space
(output of the encoder). Another recent approach [21] replaces this
cycle-consistency constraint using contrastive learning techniques.
While these methods have been tested successfully for image-to-
image translation, our goal is to adapt them to motion retargeting.

In order to use these methods for motion retargeting, we need
to build neural network models that can properly process skeleton
data. We can take inspiration from the literature in skeleton-based
action recognition, which has seen several breakthroughs over the
last decade. Initially centered around recurrent and convolutional
neural networks [10, 13], the field increasingly uses graph convolu-
tions [28]. Graph convolutions constitute a more natural operation
to perform on skeleton data as they allow to properly exploit their
underlying structure. Many variants have been proposed, using
directed skeleton graphs, using wider kernel size convolutions with
𝑘-adjacency matrices, or using learnable graph adjacency matrices
[15, 24]. Performing even better are neural network models using
self-attention mechanisms, that can be seen as a special case of
graph convolutions where the graph is dynamically constructed
based on attention coefficients [22, 25].

In themotion retargeting literature, the second step of the human-
robot imitation process we described is often considered lightly.
Existing approaches typically focus on some joints of interest for
which they define a transformation, for instance homothetic [29],
or obtained by resizing the bones while keeping the joint angles
invariant [6]. In comparison, our retargeting method has more free-
dom in the range of transformations it can apply to the source
skeleton. Most related to our work is the deep motion retargeting
model proposed in [1]. They also address the problem of unpaired
cross-domain translation of motions. They use an architecture con-
sisting of encoders, decoders and discriminators. However, their
approach uses as input joint orientations (as quaternions) instead
of positions, which has troublesome practical implications for deep
learning [27], as well as struggles to capture some meaningful mo-
tion features such as joint contacts (e.g. in the clapping handmotion,
hand contacts are not reflected in joint orientations information).
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Moreover, our current raw data are videos, which are processed
by deep learning algorithms to extract joint positions [2, 5] with
performance comparable to to RGB-D cameras like the Kinect [17],
whereas joint orientations are not directly obtained.

3 METHODS
In this section, we describe the retargeting algorithm. As depicted
in figure 2, the algorithm consists of a pair of encoder-decoder
to extract the main characteristics of a motion and to generate a
motion in the target joint position space, and a discriminator to
challenge the decoder. We then describe our training process.

Figure 2: Algorithm architecture with an encoder-decoder
and a discriminator.

3.1 Encoder and decoder
We present here the proposed encoder-decoder model for motion
retargeting. The encoder takes as input 𝑥𝐴 , a sequence of joint
positions in the domain of motions performed by a performer 𝐴.
It infers a latent variable 𝑧 from this input motion, disentangling
information about the motion itself from the information about the
performer, as represented in figure 3. Then the decoder takes as
input this latent variable 𝑧 as well as the lengths of the performer B
bones, that we denote 𝑙𝐵 , and outputs a prediction 𝑥𝐵 corresponding
to the motion translated to the domain of motions performed by
the performer B. In this work, we assume that source and target
skeletons share the same structure, but that bone lengths vary
between the two.

Figure 3: Details of the encoder-decoder.

The encoder and the decoder both comprise three layers of graph
convolutions mixed with three layers of temporal 1D convolutions.
The graph convolutions allow to process information on the skele-
ton dimension, while the temporal convolutions allow to process
information on the temporal dimension.

For the encoder, the temporal convolutions use a kernel size of 3
and a stride of 2. For the decoder, we experimented with : option 1:
transposed convolutions; option 2: using upsampling with a factor
of 2, followed by convolutions of kernel size 3 and stride 1. While
the transposed convolutions seem at first like the right choice to

have a symmetrical architecture for the encoder and the decoder, it
can create artifacts on the generated data, that we do not observe
using the second option.

For the encoder, we use standard directed graph convolutions,
where we have different sets of weights for the parent nodes and for
the children nodes (denoted respectively𝑊𝑝 and𝑊𝑐 ). The graph
convolution performs the following operation on an input 𝑥 of
shape (𝑁 , 𝑑) where 𝑁 is the number of nodes in the graph (here the
number of joints), and 𝑑 is the number of features for each node 𝑖:

𝑥𝑖 ← 𝜎

(
𝑊𝑟 · 𝑥𝑖 +

∑︁
𝑗 ∈C(𝑖)

𝑊𝑐 · 𝑥 𝑗 +
∑︁

𝑗 ∈P(𝑖)
𝑊𝑝 · 𝑥 𝑗

)
(1)

where P(𝑖) and C(𝑖) denote respectively the parents and children
of node 𝑖 in the graph, 𝜎 is the sigmoid activation function, and𝑊𝑟

corresponds to a third set of weights. Bias coefficients are omitted
for simplicity, here and in the rest of the methods section.

The decoder needs to include the bone lengths of the target
performer as additional input. We choose to include those as edge
features in the graph, and instead perform two-steps graph con-
volutions in the decoder. The first step updates edge features 𝑒𝑖 𝑗
based on adjacent nodes’ features 𝑥𝑖 and 𝑥 𝑗 , and the second step
updates node features based on parent and children edges’ features,
as expressed in the following equations:

𝑒𝑖 𝑗 ← 𝜎

(
𝑊𝑒 · 𝑒𝑖 𝑗 +𝑊− · 𝑥𝑖 +𝑊+ · 𝑥 𝑗

)
(2)

𝑥𝑖 ← 𝜎

(
𝑊𝑟 · 𝑥𝑖 +

∑︁
𝑗 ∈C(𝑖)

𝑊𝑐 · 𝑒𝑖 𝑗 +
∑︁

𝑗 ∈P(𝑖)
𝑊𝑝 · 𝑒 𝑗𝑖

)
(3)

where𝑊𝑒 ,𝑊+,𝑊− denote sets of weights for the first step. This
graph convolution operation makes it possible for the decoder to
generate motion conditioned on the provided bone lengths.

3.2 Discriminator
The discriminator takes as input a predicted motion 𝑥𝐵 and target
performer bone lengths 𝑙𝐵 and outputs a real number scoring how
well the predicted motion fits the distribution of target motions. It is
trained with adversarial training, using positive real samples from
the distribution D𝐵 and fake samples generated by the encoder-
decoder network. Its structure is similar to the encoder, with an
additional dense layer at the end to output the score. It combines
temporal 1D convolutions and two-steps graph convolutions to
include the bone lengths 𝑙𝐵 in the processing.

3.3 Training
Following the Least Squares GAN method [16], the discriminator
is trained with the following loss function:

L𝐷 =
1
2
E𝑥𝐵∼D𝐵

[ (
𝐷 (𝑥𝐵)−1

)2] + 1
2
E𝑥𝐴∼D𝐴

[
𝐷
(
𝑓𝐴→𝐵 (𝑥𝐴)

)2] (4)

where𝐷 denotes the discriminator, and 𝑓𝐴→𝐵 (𝑥𝐴) = dec(enc(𝑥𝐴), 𝑙𝐵)
the encoder-decoder network translating from subject A to B.

We train the encoder-decoder network (working as the generator
as well) with a combination of several loss functions, following the
CycleGAN [30] and UNIT [14] methods for unpaired domain-to-
domain translation. Both methods use a loss function coming from
the adversarial training:
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L𝐺 =
1
2
E𝑥𝐴∼D𝐴

[ (
𝐷
(
𝑓𝐴→𝐵 (𝑥𝐴)

)
− 1

)2] (5)

The cycleGAN model combines it with a cycle consistency loss:

L𝑐𝑦𝑐𝑙𝑒 = E𝑥𝐴∼D𝐴

[𝑥𝐴 − 𝑓𝐵→𝐴 (𝑓𝐴→𝐵 (𝑥𝐴))
2
2

]
(6)

where 𝑓𝐵→𝐴 (𝑥𝐵) = dec(enc(𝑥𝐵), 𝑙𝐴) denotes the encoder-decoder
network translating from subject B to subject A.

In comparison, the UNIT model combines it with a variational
auto-encoder loss and a cycle consistency loss on the latent space:

L𝑣𝑎𝑒 = E𝑥𝐴∼D𝐴

[𝑥𝐴 − dec(enc(𝑥𝐴), 𝑙𝐴)22 + enc(𝑥𝐴)22] (7)

L𝑐𝑦𝑐𝑙𝑒𝑈𝑁𝐼𝑇 = E𝑥𝐴∼D𝐴

[enc(𝑥𝐴) − enc(𝑓𝐴→𝐵 (𝑥𝐴))
2
2

]
(8)

where enc and dec denote the encoder and decoder networks.
We experiment with both methods, and train our models on a

dataset of animated motions called Mixamo (https://www.mixamo.
com/). This dataset advantageously contains the same motions per-
formed by different animated characters. We create a training and
testing set from motions exported from the website, with 800 mo-
tions distributed among 25 characters for the training set (unpaired
data), and 110 same motions for 4 other characters in the test set.
The Mixamo dataset comprise fbx files, a type of 3D model file
containing mesh, material, texture, and skeletal animation data,
which can be easily 3d joint positions.

With this separation, we ensure that the training data do not
contain any motion performed by two different characters, and
on the contrary, that testing data contain corresponding motions
for different characters, which allows us to compute a prediction
error. However, the motions are automatically adapted to the ani-
mated characters and the implementation of this adaptation is not
available. We can see that some motions present impossible body
configurations (e.g. arm going through head). Consequently, we
will also perform visual inspection in order to validate our method.

4 EARLY RESULTS
We present here early results. Figure 4 displays an example motion
𝑥𝐴 , the corresponding predicted motion obtained with the UNIT
model after training 𝑥𝐵 , and the ground truth motion performed
by performer B taken from the Mixamo test set 𝑥𝐵 . Figure 4 only
shows one time frame of the full motion.

Figure 4: Example of motion retargeting using UNIT.

While we can observe that the predicted skeleton is of compara-
ble size with the ground truth skeleton (which indicates that there
is to some extent a translation of the motion to the target domain),
the pose is visually very different from the ground truth.

We measure the average retargeting prediction error on the test
set using the two methods described above, and compare them
with two simple baselines consisting respectively in copying the

source joint positions, and copying the source joint orientations
(and computing the joint positions using the target skeleton bone
lengths). The results are displayed in table 1.
Table 1: Comparison of the different retargeting methods.

Method Reconstruction
error (train)

Reconstruction
error (test)

Retargeting
error (test)

Position copy 0 mm 0 mm 195 mm
Rotation copy 0 mm 0 mm 79 mm
CycleGAN 70 mm 182 mm 243 mm

UNIT 48 mm 164 mm 209 mm
The results argue so far against our initial hypothesis that deep

learning methods can successfully perform unpaired motion re-
targeting, as a simple method copying joint orientations (rotation
copy in the table) can better retarget motions.

More experiments will be conducted in order to properly identify
the causes of this failure. While unsupervised domain-to-domain
translation has been successfully applied to images, the mecha-
nisms behind this success remain unclear. Indeed, the unsupervised
domain-to-domain translation constitutes an ill-posed problem,
where many solutions can satisfy the criteria we optimize for, while
not performing the translation we expect. For instance, an image-
to-image style translation problem in an unsupervised setting could
in principle accept as a solution a function 𝑓𝐴→𝐵 correctly applying
the desired style translation 𝑓 ∗

𝐴→𝐵
, but also applying at the same

time a bijection𝑏 on the image space for which the style is invariant.
The candidate solutions 𝑓𝐴→𝐵 = 𝑓 ∗

𝐴→𝐵
◦𝑏 and 𝑓 ∗

𝐴→𝐵
are as good at

minimizing the loss function, yet only the later is the solution we
wish to reach. Investigating this problem, and how it was addressed
for image-to-image translation, could help us find better network
designs or initialization strategies leading to the desired solution.

5 CONCLUSION
This early-stage research has shown that deep learning unsuper-
vised motion retargeting is feasible yet not accurate enough to
replace simpler naive methods. Still, as explained in the introduc-
tion, such naive methods are limited in that they cannot capture
and translate some meaningful features of the motion, and we think
that more effort is needed to improve motion retargeting models.

Future work will extend the current study in three directions:
• Further investigating the failure of the current method, as
explained in the last section.
• Creating a dataset of paired motion data from human-human
imitation or robot-human imitation. We hypothesize that
humans can perform accurate imitation, and thus participate
in building a dataset of paired motions. A first step would
be to have enough paired data to replace the Mixamo test
set. In a second step, if enough paired data is available, it
might become possible to train the retargeting models in a
supervised learning setting, largely simplifying the problem.
• Improving the model architecture in order to obtain more ac-
curate retargeting predictions. As hinted by their success in
the field of action recognition, skeleton self-attention layers,
as well as temporal self-attention layers (transformers) could
also help our model better capturing important features of
the motion and generating accurate predictions.

Annabi, L., Ma, Z., and Nguyen, S. M. (2024). Unsupervised Motion Retargeting for Human-Robot Imitation. Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction(587–591). Association for
Computing Machinery. https://doi.org/10.1145/3610978.3640588

https://www.mixamo.com/
https://www.mixamo.com/
https://doi.org/10.1145/3610978.3640588


Unsupervised Motion Retargeting for Human-Robot Imitation HRI ’24 Companion, March 11–14, 2024, Boulder, CO, USA

ACKNOWLEDGMENTS
This project is partially funded by Institut Carnot and AID Project
ACoCaTherm.

REFERENCES
[1] Kfir Aberman, Peizhuo Li, Dani Lischinski, Olga Sorkine-Hornung, Daniel Cohen-

Or, and Baoquan Chen. 2020. Skeleton-aware networks for deep motion retarget-
ing. ACM Transactions on Graphics (TOG) 39, 4 (2020), 62–1.

[2] Valentin Bazarevsky, Ivan Grishchenko, Karthik Raveendran, Tyler Zhu, Fan
Zhang, and Matthias Grundmann. 2020. BlazePose: On-device Real-time Body
Pose tracking. CoRR abs/2006.10204 (2020).

[3] Aude Billard and R. Siegward. 2004. Robot Learning fromDemonstration. Robotics
and Autonomous Systems 47, 2-3 (June 2004), 65–67.

[4] Agathe Blanchard, Sao Mai Nguyen, Maxime Devanne, Mathieu Simonnet, Myr-
iam Le Goff-Pronost, and Olivier Rémy-Néris. 2022. Technical Feasibility of
Supervision of Stretching Exercises by a Humanoid Robot Coach for Chronic
Low Back Pain: The R-COOL Randomized Trial. BioMed Research International
2022 (mar 2022), 1–10.

[5] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019. OpenPose:
Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[6] Sungjoon Choi and Joohyung Kim. 2019. Towards a natural motion generator: A
pipeline to control a humanoid based on motion data. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 4373–4380.

[7] Maxime Devanne and Sao Mai Nguyen. 2017. Multi-level Motion Analysis for
Physical Exercises Assessment in Kinaesthetic Rehabilitation. In International
Conference on Humanoid Robots (Humanoids), IEEE (Ed.).

[8] Maxime Devanne and Sao Mai Nguyen. 2019. Generating Shared Latent Vari-
ables for Robots to Imitate Human Movements and Understand their Physical
Limitations. In Computer Vision – ECCV 2018 Workshops, Laura Leal-Taixé and
Stefan Roth (Eds.). Springer International Publishing, Cham, 190–197.

[9] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. 2002. Movement imitation
with nonlinear dynamical systems in humanoid robots. In Robotics and Automa-
tion, 2002. Proceedings. ICRA’02. IEEE International Conference on, Vol. 2. IEEE,
1398–1403.

[10] Qiuhong Ke, Mohammed Bennamoun, Senjian An, Ferdous Sohel, and Farid Bous-
said. 2017. A new representation of skeleton sequences for 3d action recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
3288–3297.

[11] Seungsu Kim, ChangHwan Kim, Bumjae You, and Sangrok Oh. 2009. Stable whole-
body motion generation for humanoid robots to imitate human motions. In 2009
IEEE/RSJ International Conference on Intelligent Robots and Systems. 2518–2524.
https://doi.org/10.1109/IROS.2009.5354271

[12] Jonas Koenemann, Felix Burget, and Maren Bennewitz. 2014. Real-time imitation
of human whole-body motions by humanoids. In 2014 IEEE International Con-
ference on Robotics and Automation (ICRA). 2806–2812. https://doi.org/10.1109/
ICRA.2014.6907261

[13] Jun Liu, Amir Shahroudy, Dong Xu, and Gang Wang. 2016. Spatio-temporal
lstm with trust gates for 3d human action recognition. In European conference on
computer vision. Springer, 816–833.

[14] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. 2017. Unsupervised image-to-image
translation networks. Advances in neural information processing systems 30 (2017).

[15] Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang.
2020. Disentangling and unifying graph convolutions for skeleton-based action
recognition. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 143–152.

[16] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. 2017. Least squares generative adversarial networks. In Proceedings
of the IEEE international conference on computer vision. 2794–2802.

[17] Aleksa Marusic, Sao Mai Nguyen, and Adriana Tapus. 2023. Evaluating Kinect,
OpenPose and BlazePose for Human Body Movement Analysis on a Low Back
Pain Physical Rehabilitation Dataset. In Companion of the 2023 ACM/IEEE In-
ternational Conference on Human-Robot Interaction (HRI ’23). Association for
Computing Machinery, New York, NY, USA, 587–591.

[18] S. Nakaoka, A. Nakazawa, K. Yokoi, H. Hirukawa, and K. Ikeuchi. 2003. Gener-
ating whole body motions for a biped humanoid robot from captured human
dances. In 2003 IEEE International Conference on Robotics and Automation (Cat.
No.03CH37422), Vol. 3. 3905–3910 vol.3. https://doi.org/10.1109/ROBOT.2003.
1242196

[19] Chrystopher L. Nehaniv and Kerstin Dautenhahn. 2002. The Correspondence
Problem. MIT Press, Cambridge, MA, USA, 41–61.

[20] Chrystopher L Nehaniv and Kerstin Dautenhahn. 2007. Imitation and Social
Learning in Robots, Humans and Animals: Behavioural, Social and Communicative
Dimensions. Cambridge Univ. Press, Cambridge.

[21] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. 2020. Contrastive
learning for unpaired image-to-image translation. In European conference on
computer vision. Springer, 319–345.

[22] Chiara Plizzari, Marco Cannici, and Matteo Matteucci. 2021. Skeleton-based
action recognition via spatial and temporal transformer networks. Computer
Vision and Image Understanding 208 (2021), 103219.

[23] Stefan Schaal. 1997. Learning from Demonstration. In Advances in Neural
Information Processing Systems 9, M. C. Mozer, M. I. Jordan, and T. Petsche (Eds.).
MIT Press, 1040–1046.

[24] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. Skeleton-based action
recognition with directed graph neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7912–7921.

[25] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu. 2019. Two-stream adaptive
graph convolutional networks for skeleton-based action recognition. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition.
12026–12035.

[26] Likun Wang, Guoyan Wang, Shuya Jia, Alison Turner, and Svetan Ratchev. 2022.
Imitation learning for coordinated human–robot collaboration based on hidden
state-space models. Robotics and Computer-Integrated Manufacturing 76 (2022),
102310. https://doi.org/10.1016/j.rcim.2021.102310

[27] Sitao Xiang and Hao Li. 2020. Revisiting the continuity of rotation representations
in neural networks. arXiv preprint arXiv:2006.06234 (2020).

[28] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial temporal graph convo-
lutional networks for skeleton-based action recognition. In Thirty-second AAAI
conference on artificial intelligence.

[29] Haodong Zhang, Weijie Li, Yuwei Liang, Zexi Chen, Yuxiang Cui, Yue Wang,
and Rong Xiong. 2021. Human-Robot Motion Retargeting via Neural Latent
Optimization. CoRR (2021).

[30] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on computer vision. 2223–2232.

Annabi, L., Ma, Z., and Nguyen, S. M. (2024). Unsupervised Motion Retargeting for Human-Robot Imitation. Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction(587–591). Association for
Computing Machinery. https://doi.org/10.1145/3610978.3640588

https://doi.org/10.1109/IROS.2009.5354271
https://doi.org/10.1109/ICRA.2014.6907261
https://doi.org/10.1109/ICRA.2014.6907261
https://doi.org/10.1109/ROBOT.2003.1242196
https://doi.org/10.1109/ROBOT.2003.1242196
https://doi.org/10.1016/j.rcim.2021.102310
https://doi.org/10.1145/3610978.3640588

	Abstract
	1 Introduction
	2 Related Work
	2.1 Whole-body imitation
	2.2 Motion retargeting

	3 Methods
	3.1 Encoder and decoder
	3.2 Discriminator
	3.3 Training

	4 Early results
	5 Conclusion
	Acknowledgments
	References

