
Article

A Smart Home Digital Twin to Support the Recognition of
Activities of Daily Living

Damien Bouchabou 1,‡* ,Juliette Grosset 2,‡ , Sao Mai Nguyen 3 , Christophe Lohr4 , and Xavier Puig5

Citation: Bouchabou, D.; Grosset, J.;

Nguyen, S.M.; Lohr, C.; Puig, X. A

Smart Home Digital Twin to Support

the Recognition of Activities of Daily

Living. Sensors 2021, 1, 0.

https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional af-

filiations.

Copyright: © 2024 by the authors.

Submitted to Sensors for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 IMT Atlantique and U2IS, Ensta Paris; damien.bouchabou@gmail.com
2 IMT Atlantique and ECAM Rennes; juliette.grosset@ecam-rennes.fr
3 IMT Atlantique and U2IS, ENSTA Paris; nguyensmai@gmail.com
4 IMT Atlantique; christophe.lohr@imt-atlantique.fr
5 FAIR; xavierpuig@meta.com
* Correspondence: damien.bouchabou@gmail.fr
‡ These authors contributed equally to this work.

Abstract: One of the challenges in the field of human activity recognition in smart homes based1

on IoT sensors is the variability in the recorded data. This variability arises from differences in2

home configurations, sensor network setups, and the number and habits of inhabitants, resulting3

in a lack of data that accurately represents the application environment. Although simulators have4

been proposed in the literature to generate data, they fail to bridge the gap between training and5

field data or produce diverse datasets. In this article, we propose a solution to address this issue6

by leveraging the concept of digital twins to reduce the disparity between training and real-world7

data and generate more varied datasets. We introduce the Virtual Smart Home, a simulator8

specifically designed for modeling daily life activities in smart homes, which is adapted from the9

Virtual Home simulator. To assess its realism, we compare a set of activity data recorded in a10

real-life smart apartment with its replication in the Virtual Smart Home simulator. Additionally,11

we demonstrate that an activity recognition algorithm trained on the data generated by the Virtual12

Smart Home simulator can be successfully validated using real-life field data.13

Keywords: Smart-Home, machine learning, home automation, simulator, database, digital twin,14

transfer learning15

1. Introduction16

Over the past few decades, there has been a significant increase in the adoption of17

smart homes and real-world testbeds, driven by the proliferation of Internet of Things18

(IoT) devices. These devices enable the detection of various aspects within homes, such19

as door openings, room luminosity, temperature, humidity, and more. Human Activity20

Recognition (HAR) algorithms in smart homes have become crucial for classifying21

streams of data from IoT sensor networks into Activities of Daily Living (ADLs). These22

algorithms enable smart homes to provide adaptive services, including minimizing23

power consumption, improving healthcare, and enhancing overall well-being.24

Despite the notable advancements in machine learning techniques and the im-25

proved performance of HAR algorithms, their practical application to real-world test26

cases continues to encounter challenges. These challenges primarily stem from the27

variability and sparsity of sensor data, leading to a significant mismatch between the28

training and test sets.29

1.1. A Variable and Sparse Unevenly Sampled Time Series30

While HAR based on video data has made significant strides in performance [1],31

HAR in smart homes continues to encounter specific challenges, as highlighted in32

the survey by Bouchabou et al. [2]. Recent advances in HAR algorithms, such as33
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convolutional neural networks [3] and fully connected networks [4], along with sequence34

learning methods like long-short term memory [5], have contributed to advancements in35

the field. However, the task of recognizing ADLs in a smart home environment remains36

inherently challenging, primarily due to several contributing factors:37

• Partial observability and sparsity of the data: The input data in HAR consists of38

traces captured by a variety of sensors, including motion sensors, door sensors,39

temperature sensors, and more, integrated into the environment or objects within40

the house [6]. However, each sensor has a limited field of view, resulting in most41

of the residents’ movements going unobserved by the sensor network in a typical42

smart home setup. Unlike HAR in videos, where the context of human actions,43

such as objects of interest or the position of obstacles, can be captured in the images,44

the sparsity of ambient sensors in HAR does not provide information beyond their45

field of view. Each sensor activation alone provides limited information about46

the current activity. For example, the activation of a motion sensor in the kitchen47

could indicate activities such as "cooking," "washing dishes," or "housekeeping."48

Therefore, the information from multiple sensors needs to be combined to infer49

the current activity accurately. Additionally, each sensor activation provides only50

a partial piece of information about the activity and the state of the environment,51

unlike videos where both the agent performing the activity and the environment52

state are visible. Consequently, the time series of sensor activity traces cannot be53

approximated as a Markov chain. Instead, estimating the context or current state of54

the environment relies on past information and the relationship with other sensors.55

• Variability of the data: Activity traces between different households exhibit signifi-56

cant variations. The variability arises from differences in house structures, layouts,57

and equipment. House layouts can vary in terms of apartments, houses with58

gardens, houses with multiple floors, the presence of bathrooms and bedrooms,59

open-plan or separate kitchens, and more. The number and types of sensors can60

also differ significantly between homes. For instance, datasets like MIT [7] use 77-8461

sensors for each apartment, while the Kasteren dataset [8] uses 14-21 sensors. The62

ARAS dataset [9] includes apartments with 20 sensors, while the Orange4Home63

dataset [10] is based on an apartment equipped with 236 sensors. All these factors,64

including home topography, sensor count, and their placement, can result in radical65

differences in activity traces. The second cause of variability stems from household66

composition and residents’ living habits. ADLs vary depending on the residents’67

habits, hobbies, and daily routines, leading to different class balances among ADLs.68

For example, the typical day of a student, a healthy adult, or an elderly person with69

frailty will exhibit distinct patterns. Furthermore, the more residents there are, the70

more the sensor activation traces corresponding to each resident’s activities become71

intertwined, leading to complex scenarios involving composite actions, concurrent72

activities, and interleaved activities.73

Therefore, algorithms need to analyze sparse and irregular time series data to gener-74

alize across various house configurations, equipment, households, and habits. Training75

machine learning algorithms to be deployed in such diverse scenarios necessitates76

training data that encompasses this wide variability.77

1.2. Digital Twins for Generating Similar Data78

To bridge the gap between training data and real-world usage data, data generation79

can be a potential solution, particularly through the concept of digital twins. A digital80

twin refers to a virtual representation that serves as a real-time digital counterpart of a81

physical object or process [11,12]. In the context of HAR, a digital twin could be a virtual82

replica of a target house, complete with the same installed sensors. Within this digital83

environment, one or multiple avatars can simulate ADLs by modeling the behaviors84

of residents. This way, the digital twin can be used to fine-tune algorithms before their85

deployment in the actual target house.86
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Moreover, digital twins have the potential to generate data representing a vast range87

of house configurations, household habits, and resident behaviors, thereby accelerating88

simulations, facilitating automatic labeling, and eliminating the cost of physical sensors.89

This extensive dataset can then be utilized for pre-training machine learning models.90

Furthermore, a digital twin can aid in evaluating the correct positioning and selection of91

sensors to recognize a predefined list of activities.92

Digital twin models have gained significant interest in various application domains,93

such as manufacturing, aerospace, healthcare, and medicine [13]. While digital twins for94

smart homes are relatively less explored, digital twins for buildings have been studied95

extensively. Ngah Nasaruddin et al. [14] define a digital twin of a building as the96

interaction between the interior environment of a real building and a realistic virtual97

representation model of the building environment. This digital twin enables real-time98

monitoring and data acquisition. For example, digital twins of buildings have been99

utilized in [15] to determine the strategic locations of sensors for efficient data collection.100

1.3. Contributions101

The gap between training and testing data in HAR for smart homes presents102

significant challenges due to the variability and sparsity of activity traces. In this103

study, we address this issue by exploring the possibility of generating data suitable for104

deployment scenarios.105

Our contributions are as follows:106

• We propose a novel approach that paves the way for digital twins in the context of107

smart homes.108

• We enhance the Virtual Home [48] video-based data simulator to support sensor-109

based data simulation for smart homes, which we refer to as VirtualSmartHome.110

• We demonstrate, through an illustrative example, that we can replicate a real111

apartment to generate data for training an ADL classification algorithm.112

• Our study validates the effectiveness of our approach in generating data that113

closely resembles real-life scenarios and enables the training of an ADL recognition114

algorithm.115

• We outline a tool and methodology for creating digital twins for smart homes,116

encompassing a simulator for ADLs in smart homes and a replicable approach for117

modeling real-life apartments and scenarios.118

• The proposed tool and methodology can be utilized to develop more effective119

ADL classification algorithms and enhance the overall performance of smart home120

systems.121

In the next section (Section 2), we provide a comprehensive review of the state-122

of-the-art approaches in HAR algorithms, ADL datasets, and home simulators. Sub-123

sequently, in Section 3, we introduce the VirtualSmartHome simulator that we have124

developed, along with our methodology for replicating real apartments and human125

activities. Moving forward, in Section 4, we present an evaluation of our simulator,126

comparing the synthetic data produced by the VirtualSmartHome simulator with real127

data from a smart apartment. We also demonstrate the potential of our approach by128

employing the generated datasets for a HAR algorithm.129

2. Related Work130

While recent HAR algorithms have demonstrated improved recognition rates when131

trained and tested on the same households, their generalizability across different house-132

holds remains limited. The existing ADL datasets also have their own limitations,133

prompting the exploration of smart home simulators to generate relevant test data. In134

this section, we discuss the limitations of current HAR algorithms and ADL datasets,135

and review the available home simulators.136
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2.1. Machine Learning Algorithms for Activity Recognition based on Smart Home IoT Data137

Numerous methods and algorithms have been studied for HAR in the smart home138

domain. Early approaches utilized machine learning techniques such as Support Vector139

Machines (SVM), Naive Bayes networks, or Hidden Markov Models (HMM), as reviewed140

in [16]. However, these models lack generalization and adaptability, as they are designed141

for specific contexts and rely on hand-crafted features, which are time-consuming to142

produce and limit the models’ generalization and adaptability.143

More recently, deep learning techniques have emerged as a promising approach144

due to their ability to serve as end-to-end models, simultaneously extracting features145

and classifying activities. These models are predominantly based on Convolutional146

Neural Networks (CNN) or Long Short-Term Memory (LSTM).147

CNN structures excel at feature extraction and pattern recognition. They have two148

key advantages for HAR. Firstly, they can capture local dependencies, meaning they149

consider the significance of nearby observations that are correlated with the current event.150

Secondly, they are scale-invariant, capable of handling differences in step frequency or151

event occurrence. For example, Gochoo et al. [17] transformed activity sequences into152

binary images to leverage 2D CNN-based structures. Singh et al. [18] applied a 1D CNN153

structure to raw data sequences, demonstrating their high feature extraction capability.154

Their experiments demonstrated that the CNN 1D architecture yields comparable results155

to LSTM-based models while being more computationally efficient. However, LSTM-156

based models still outperform the CNN 1D architecture..157

LSTM models are specifically designed to handle time sequences and effectively158

capture both long and short-term dependencies. In the context of HAR in smart homes,159

Liciotti et al. [5] extensively investigated various LSTM structures and demonstrated that160

LSTM surpasses traditional HAR approaches in terms of classification scores without161

the need for handcrafted features. This superiority can be attributed to LSTM’s ability to162

generate features that encode temporal patterns, as highlighted in [19] when compared163

to conventional machine learning techniques. As a result, LSTM-based structures have164

emerged as the leading models for tackling the challenges of HAR in the smart home165

domain.166

2.2. Activities of Daily Living Datasets167

Unfortunately, in order for a deep learning model to achieve sufficient generaliza-168

tion, a large amount of high-quality field data is required.169

Several public real home datasets [7–10,20] are available, and an overview of sensor-170

based datasets used in HAR for smart homes is provided by De-La-Hoz-Franco et al.171

[21]. However, these datasets have limitations in terms of the number of activities and172

occupants considered, sensor usage, and the type of residents.173

The currently available public datasets are insufficient to cover the probability174

distribution of all possible HAR data and enable algorithms to generalize to application175

test data.176

Table 1. Cost of CASAS components: “smart home in a box” [20]

Components Server Light &
Motion Sensors Door Sensors Relay Temperature Sensors Total Cost

Unit Price $350 $85 $75 $75 $75
Quantity 1 24 1 2 2
Total Price $350 $2,040 $75 $150 $150 $2,765

Moreover, collecting new datasets is a costly and challenging task. For instance,177

Cook et al. [20] developed a lightweight and easy-to-install smart home design called178

"a smart home in a box," aimed at efficiently collecting data once installed in the en-179

vironment. However, the cost of components for the "smart home in a box" project180

[20], as shown in Table 1, amounted to $2,765 in 2013. Although the cost of sensors has181
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decreased over time, there are still challenges in accessing various types of houses and182

inhabitants. Additionally, collecting data from real inhabitants is time-consuming, and183

the recording cannot be accelerated like in a simulation. Furthermore, the data requires184

ground truth, including data stream segmentation (start and end time) and class labels,185

which necessitates significant user investment and is prone to errors due to manual186

annotations, as described in [2].187

Considering these challenges, researchers suggest generating data using simulation188

environments.189

The objective of simulators in the context of smart homes is to generate simulated190

data from domestic sensors that accurately reflect real-world scenarios. The production191

of synthetic data through simulation offers several advantages, including the ability to:192

1) collect perfectly controlled ground truth data, and 2) introduce diversity in terms of193

environments and living habits.194

2.3. Existing Home Simulators195

In the field of HAR, the collection of data and the creation of physical environments196

with sensors pose significant challenges, including sensor positioning, installation, and197

configuration. Additionally, the collection of datasets is often limited by ethical protocols198

and user participation.199

Table 2. Comparison of simulation environments : table indicating for each simulator : its approach (model-based, interactive or
hybrid), its development environment, the language of the API, the number or name of the apartment recorded, its apartment designer
/ editor, its application and its output (videos or sensor logs); whether it is open source, is multi-agent, records objects, uses activity
scripts, provides a 3D visualisation; and whether it records IoT Sensors and their numnert

Simulators Open Approach Multi Environment API Apartment Objects Scripts IoT Sensors Designer/Editor Visual. Application Output
AI2Thor [22] Yes Model Yes Unity Python 17 609 No No Yes 3D Robot Interaction Videos
iGibson [23] Yes Model Yes Bullet Python No 15 570 No 1 Yes None Robot Interaction Videos
Sims4Action [24] No Model Yes Sims 4 No None NA No No Game Interface 3D Human Activity Videos
Ai Habitat [25] Yes Model Yes C++ Python None NA No No Yes None Human Activity Sens. Log
Open SHS [26] Yes Hybrid No Blender Python None NA No 29 (B) With Blender 3D Human Activity Sens. Log
SESim [27] Yes Model No Unity NA NA Yes Yes 5 Yes 3D Human Activity Sens. Log
Persim 3D [28] No Model No Unity C# Gator Tech Yes No Yes (B) Yes 3D Human Activity Sens. Log
IE Sim [29] No Hybrid No NA NA NA Yes No Yes (B) Yes 2D Human Activity Sens. Log
SIMACT [30] Yes Model No JME Java 3D kitchen Yes Yes Yes (B) With Sketchup 3D Human Activity Sens. Log
Park et al [31] No Interactive No Unity NA 1 Yes No NA With Unity 3D Human Activity Sens. Log
Francillette et al [32] Yes Hybrid Yes Unity NA NA Yes Yes 8 (B and A) With Unity 3D Human Activity Sens. Log
Buchmayr et al [33] No Interactive No NA NA NA Yes No Yes (B) NA 3D Human Activity Sens. Log
Armac et al. [34] No Interactive Yes NA NA None Yes No Yes (B) Yes 2D Human Activity Sens. Log
VirtualHome [35] Yes Hybrid Yes Unity Python 7 308 Yes No Yes 3D Human Activity Videos

Simulation platforms have been widely used in various domains, and there has been200

a recent surge of interest in developing simulators to represent indoor environments,201

as highlighted by Golestan et al. [36], see Table 2. Simulation tools offer scalability,202

flexibility, and extensibility, making them suitable for a wide range of contexts and203

large-scale applications. They enable rapid, repeatable, and cost-effective prototyping204

of applications. For example, Bruneau et al. [38] demonstrated that users with basic205

software development skills can simulate a simple indoor environment in just one hour206

on average, whereas a similar task would require much more time in the real world.207

Some research focuses on providing photorealistic representations of environments208

to train computer vision models [25,39,40]. Other simulators incorporate actionable209

objects, allowing agents to learn manipulation and interaction with objects. These210

advancements have generated growing interest in studying embedded intelligence211

in home environments and building robots capable of performing household tasks,212

following instructions, or collaborating with humans at home [41–43].213

Designing and creating indoor simulation environments is not a straightforward214

task. Numerous parameters and variabilities that impact daily life must be considered,215

such as the type and structure of the house and external events like changes in tem-216

perature or lighting throughout the day or across seasons. The development of such217

simulation environments is expensive and time-consuming. As a result, recent research218

has explored the use of video game platforms that offer sophisticated and successful219
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simulation environments. For instance, Roitberg et al. [24], Cao et al. [44] utilized these220

environments to generate video data of human activities. However, the use of such221

environments is limited due to their closed and proprietary nature, making it challenging222

to incorporate additional functionalities.223

Other works have introduced specialized simulation platforms focused on human224

modeling, providing better control over activities [45]. According to Synnott et al. [46],225

there are two approaches to designing smart home environment simulators: interaction-226

based and model-based approaches.227

Interactive approaches involve a virtual environment (2D or 3D scenario) where228

users can act as avatars, interacting with the environment. Most papers in the field229

adopt this approach for agent modeling because it offers greater variation in agent traces230

compared to model-driven approaches, especially when a sufficient number of users231

interact with the simulators.232

For example, Park et al. [31] proposed CASS, a simulator that helps designers detect233

inconsistencies in a defined set of rules related to sensor readings, occupants’ locations,234

and actuators. Users interact with the simulator through an interface to manipulate the235

simulated environment.236

Buchmayr et al. [33] presented a simulator that models binary sensors (e.g., contact237

switches, motion and pressure sensors, temperature sensors) and incorporates faulty238

sensor behaviors by introducing noise signals to the readings. Users can generate agent239

traces by interacting with any sensor through a user interface.240

Armac and Retkowitz [34] developed a simulator for residential buildings to gener-241

ate synthetic ADL datasets. The simulator requires designers to define accessible and242

inaccessible areas (obstacles) and place devices in an indoor environment. Users can243

interact with virtual agents to244

produce agent traces by interacting with environmental objects.245

Interactive approaches offer accurate and realistic simulations since each action or246

movement is performed by a real human. However, generating large amounts of data247

through interactive approaches can be costly and requires significant effort from users.248

Thus, these approaches are typically suitable for testing single activities or short runs.249

On the other hand, model-based approaches involve specifying a reference model250

for the simulation. The level of abstraction in defining activities determines the precision251

of the modeled behavior. Kamara et al. [47] argued that this method is sufficient for252

generating both ADL traces in residential settings and office routines in public buildings.253

Bouchard et al. [30] proposed SIMACT, a simulator that allows third-party com-254

ponents to connect to the simulator’s database to receive and store real-time sensor255

readings. The simulator includes a set of pre-recorded scenarios (agent traces) to ensure256

data consistency. Users can also define their own scenarios using an XML file. However,257

SIMACT does not provide a multi-agent environment.258

Ho et al. [27] introduced Smart Environment Simulation (SESim), a simulator259

designed to generate synthetic sensor datasets. The simulator underwent three validation260

phases: the creation of a smart environment, analysis of the generated data, and training261

of an activity recognition algorithm using a multi-layer neural network. The algorithm262

achieved an average recognition accuracy of 83.08% and F1-score of 66.17%. However,263

the evaluation was conducted solely on synthetic data generated by the simulator.264

Lee et al. [28] introduced Persim-3D, a context-driven simulator implemented265

in Unity 3D. The simulator represents agent activities as sequences of actions and266

incorporates contexts that determine the conditions under which specific activities can267

be performed. To assess the external validity of synthetic datasets, the authors compared268

the data generated by the simulator with real-world data collected from the Gator Tech269

Smart House (GTSH) [? ] and reported an 81% similarity. However, the authors did270

not evaluate the performance of HAR algorithms using this simulator. Additionally, the271

current version of the simulator only supports simulation of a single user activity.272
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More recently, hybrid approaches have emerged, combining both model-based and273

interactive approaches in a single simulator [26,29,32,48]. These approaches offer the274

advantages of both methods.275

Alshammari et al. [26] proposed OpenSHS, a simulator for ADL dataset generation.276

Designers can use Blender 3D to create the space and deploy devices, and users can277

control an agent with a first-person view to generate agent traces. The simulator records278

sensor readings and states based on user interactions. It also supports script-based279

actions in the environment. However, the project does not appear to be actively updated280

or used.281

Francillette et al. [32] developed a simulation tool capable of modeling the behavior282

of individuals with Mild Cognitive Impairment (MCI) or Alzheimer’s Disease (AD).283

The simulator allows manual control or modeling of an agent based on a behavior tree284

model with error probabilities for each action. The authors demonstrated that their285

simulator accurately emulates individuals with MCI or AD when actions have different286

error probabilities.287

Synnott et al. [29] introduced IE Sim, a simulator capable of generating datasets288

associated with normal and hazardous scenarios. Users can interact with the simu-289

lator through a virtual agent to perform activities. The simulator provides an object290

toolbox with a wide range of indoor objects and sensors, allowing users to create new291

objects as well. IE Sim collects sensor readings throughout the simulation. The authors292

demonstrated that the simulator’s data can be used to detect hazardous activities and293

overlapping activities. IE Sim combines interactive and agent modeling approaches.294

Puig et al. [48,49] proposed the VirtualHome simulator, a multi-agent platform295

for simulating activities in a home. Humanoid avatars represent the agents, which296

can interact with the environment using high-level instructions. Users can also control297

agents in a first-person view to interact with the environment. This simulator supports298

video playback of human activities and enables agent training for complex tasks. It299

includes a knowledge base that provides instructions for a wide range of activities.300

The VirtualHome simulator aligns with our requirements for recognizing activities301

in a house. Although some common human actions are not yet implemented, such as302

hovering or eating, the extensible programming of the simulator allows for modifications.303

Furthermore, the simulator facilitates the reproduction of human activity scenarios,304

retrieval of sensor states, and replication of a real smart apartment for a digital twin. It is305

an ongoing project with an active community.306

3. Virtual Smart Home: The Simulator307

We present Virtual Smart Home, a simulator designed for modeling activities of308

daily living in smart homes by adapting the VirtualHome simulator [48] to log sensor309

activations in a smart home environment. To assess its realism, we compare the simulated310

activities with a multi-user dataset recorded in a real-life living lab.311

3.1. Design of Virtual Smart Home312

After reviewing the available simulators discussed in Section 2.3, we have selected313

VirtualHome [48] as the foundation for our smart home simulator. Originally developed314

for computer vision algorithms, VirtualHome is a multi-agent platform designed to315

simulate activities in a house or apartment. It utilizes humanoid avatars that can interact316

with their environment and perform activities based on high-level instructions. The317

simulator incorporates a knowledge base that enables the creation of videos depicting318

human activities, as well as training agents to perform complex tasks. Additionally, it319

provides furnished flats for simulation purposes (see Figure 1).320

VirtualHome is developed on the Unity3D game engine, which offers robust kine-321

matic, physics, and navigation models. Moreover, users can take advantage of the vast322

collection of 3D models accessible through Unity’s Assets store, providing access to a323

diverse range of humanoid models.324
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Figure 1. Virtual-Home apartment scenes

Moreover, VirtualHome offers a straightforward process for adding new flats by325

utilizing the provided Unity project [49]. Each environment in VirtualHome represents326

an interior flat with multiple rooms and interactive objects. The configuration of each327

flat scene is stored in a .json file, which contains nodes representing each object and328

their relationships with other objects (specified as “edge labels”). For instance, the label329

“between” can be used to describe the relationship between rooms connected by a door.330

By modifying these description files, users can easily add, modify, or remove objects,331

enabling the creation of diverse scenes for generating videos or training agents.332

Another notable feature of VirtualHome is its capability to create custom virtual333

databases within specific environments, with a supportive community that contributes334

new features. In a study conducted by Liao et al. [50], VirtualHome was utilized to335

generate a novel dataset. The researchers expanded the original VirtualHome database336

by incorporating additional actions for the agents and introducing programs. These337

programs consist of predefined sequences of instructions that can be assigned to agents,338

enabling them to perform activities within their simulated environment.339

In VirtualHome, an avatar’s activity is represented by a sequence of actions, such340

as “<char0> [PutBack] <glass> (1) <table>”, as described in [51]. This flexible framework341

facilitates the training of agents to engage in various everyday activities.342

The authors successfully collected a new dataset [50] based on VirtualHome [35],343

encompassing 3,000 daily activities. Furthermore, they expanded the database by in-344

corporating over 30,000 programs, offering a wide range of actions and possibilities.345

Additionally, the researchers graphed each environment, which consisted of an average346

of 300 objects and 4,000 spatial relationships.347

Using VirtualHome, users can create scenarios where 3D avatars perform daily348

activities, with the ability to capture the simulated actions through a virtual camera.349

Moreover, the simulator enables the replication of flats, facilitating the creation of digital350

twins of apartments. However, it is important to note that VirtualHome does not support351

the acquisition of data through home automation sensors.352

In order to enhance the ability to reproduce scenarios and collect data from ambient353

sensors, we have implemented several new features in our simulator:354

1. Interactive Objects: While VirtualHome already offers a variety of objects for355

inclusion in apartments, many are passive and non-interactive. To address this356

limitation, we added the functionality to interact with some new objects. Agents357

can now open trash cans, drawers of column cabinets, and push on toilet faucets.358
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Objects with doors are implemented by splitting them into two parts—one static359

and one capable of rotation around an axis to simulate interaction. Fluid objects like360

toilet faucets are simulated by placing the origin point of the fluid at its supposed361

source.362

2. Simulation Time Acceleration: To generate a large volume of data quickly, we363

implemented the ability to accelerate simulation times. This feature utilizes the364

Time.timeScale function of the Unity game engine. However, the acceleration can-365

not surpass the rendering time of the Unity game engine, resulting in a maximum366

fourfold increase in simulation speed.367

3. Real-Life Apartment Replication and Room Creation: To replicate a real-life apart-368

ment, we propose a methodology that involves creating a 2D map of the flat using369

tools like Sweet Home 3D [52]. This map is then reproduced in VirtualHome,370

respecting the hierarchical object structure imposed by the simulator. Finally, the371

interactive objects are placed in a manner similar to their real-world counterparts.372

We demonstrated the effectiveness of this method by replicating a real-life intel-373

ligent apartment based on our room dimension measurements. Additionally, we374

have introduced the ability to create new rooms, such as outdoor and entrance375

areas.376

4. IoT Sensors: While VirtualHome previously focused on recording activities using377

videos, we have implemented IoT sensors to enhance the simulation. The following378

sensors have been incorporated: (1) opening/closing sensors, (2) pressure sensors,379

(3) lights, (4) power consumption, and (5) zone occupancy sensors. Except for the380

zone occupancy sensors, all other sensors are simulated using the environment381

graph of the scene. This graph lists all objects in the scene with their corresponding382

states (e.g., closed/open, on/off). The zone occupancy sensor takes the form of a383

sensitive floor, implemented using a raycast. It originates from the center of the384

avatar and is directed downwards. The floor of the flat is divided into rooms, and385

the intersection with the floor identifies the room in which the avatar is located.386

5. Simulation Interface: We have developed an interface that allows users to launch387

simulations by specifying the apartment, ambient sensors, scenarios, date, and388

time. The interface facilitates the scripting of each labeled activity for reproduction389

in the simulation. It provides three main functions: (1) creation of an experiment390

configuration file, where the simulation flat and desired sensor data can be chosen;391

(2) creation of a scenario configuration file, offering choices such as experiment date,392

simulation acceleration, and various activities with their durations; (3) association393

of an experiment configuration file with a scenario configuration file and the394

subsequent launch of the simulation. This functionality enables the storage of395

synthetic sensor logs in a database file and provides a comprehensive record of396

the conducted experiment, including the experiment configuration file and the397

scenario configuration file.398

3.2. Assessing the Simulator through Dataset Creation399

Our objective is to demonstrate the Virtual Smart Home simulator’s ability to400

generate realistic data that can be utilized for training Human Activity Recognition401

(HAR) algorithms. To achieve this, we undertook the following steps:402

Firstly, we recorded Activities of Daily Living (ADLs) performed by volunteers in403

our physical smart apartment. This allowed us to collect real-world data that served as404

the ground truth for our assessment.405

Next, we replicated our smart apartment within the Virtual Smart Home simulator,406

creating a digital twin of the environment. This virtual representation ensured an407

accurate simulation of the apartment’s layout and characteristics.408

Subsequently, we programmed the avatar within the simulator to replicate the409

ADLs performed by the volunteers. This process involved instructing the virtual agent410
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to mimic the actions and interactions observed during the recording phase. As a result,411

we generated synthetic sensor logs that mirrored the behaviors of the real-world ADLs.412

Finally, we conducted an evaluation to compare the replicated data generated by413

the simulator with the original real-world data. This assessment aimed to measure the414

similarity and fidelity of the simulated data, providing insights into the effectiveness of415

the Virtual Smart Home simulator.416

3.3. Assessing the Simulator through Dataset Creation417

Our objective is to demonstrate the Virtual Smart Home simulator’s ability to418

generate realistic data that can be utilized for training HAR algorithms. To achieve this,419

we undertook the following steps:420

Firstly, we recorded ADLs performed by volunteers in our physical smart apartment.421

This allowed us to collect real-world data that served as the ground truth for our422

assessment.423

Next, we replicated our smart apartment within the Virtual Smart Home simulator,424

creating a digital twin of the environment. This virtual representation ensured an425

accurate simulation of the apartment’s layout and characteristics.426

Subsequently, we programmed the avatar within the simulator to replicate the427

ADLs performed by the volunteers. This process involved instructing the virtual agent428

to mimic the actions and interactions observed during the recording phase. As a result,429

we generated synthetic sensor logs that mirrored the behaviors of the real-world ADLs.430

Finally, we conducted an evaluation to compare the replicated data generated by431

the simulator with the original real-world data. This assessment aimed to measure the432

similarity and fidelity of the simulated data, providing insights into the effectiveness of433

the Virtual Smart Home simulator.434

3.3.1. The Smart Apartment435

To capture ground truth sensor data, our dataset was created in our smart apartment436

called Experiment’Haal [53]. This dedicated studio serves as a testbed for experimental437

assistive devices and enables user testing in a simulated domestic environment. It allows438

us to validate technological solutions proposed by end-users within their daily life439

context before deployment on a larger scale.440

Our smart apartment is equipped with various smart sensors and a ceiling-mounted441

fisheye camera. The camera records and observes the ADLs performed by the volunteers,442

providing visual data for analysis. The smart sensor array includes:443

1. A sensitive floor that tracks the movement or presence of a person in different444

areas.445

2. Motion sensors placed strategically to detect motion in specific locations.446

3. Magnetic open/close sensors to monitor the status of doors or windows.447

4. Smart lights that can be controlled remotely or manually adjusted by switches.448

5. Smart plugs to monitor the status and power consumption of various devices such449

as the stove, oven, kettle, outlets, and television.450

6. Pressure sensors installed on the bed and sofa to detect occupancy.451

Figure 2 provides a detailed overview of the smart apartment layout and the452

positions of the sensors.453

It is important to note that the sensors in the apartment come from different brands,454

resulting in heterogeneity and potential communication challenges. To address this, we455

implemented the xAAL solution [54]. This solution serves as a universal bus and acts456

as an IP-based smart home hub protocol, enabling us to collect data and events from457

devices in a unified manner.458

To facilitate data collection and analysis, we divided the open space of the apartment459

into six distinct rooms, as shown in Figure 3. The SensFloor [55], functioning as a460

presence detector, was utilized to monitor each room. This arrangement allowed us461
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to capture not only the presence of a person in a specific room but also the transitions462

between rooms.463

Figure 2. Layout showing the positions of the different sensors in the smart apartment

Figure 3. Room localization within the smart apartment

3.3.2. The Ground Truth Dataset464

To generate the ground truth dataset, we asked volunteers to perform three different465

scenarios:466

1. Morning scenario: This scenario involved getting out of bed and going through a467

typical morning routine before heading to work.468

2. Lunchtime scenario: In this scenario, participants returned home from work, pre-469

pared and ate lunch, and then went back to work.470

3. Evening scenario: This scenario focused on participants returning home for the471

evening until it was time to go to bed.472

For these scenarios, we defined a list of 17 possible activity labels, including “Bathe”,473

“Cook breakfast”, “Cook dinner”, “Cook lunch”, “Dress”, “Eat breakfast”, “Eat dinner”,474

“Eat lunch”, “Enter home”, “Go to toilet”, “Leave home”, “Read”, “Sleep”, “Sleep in475

Bed”, “Wash dishes”, and “Watch TV”. These labels were inspired by existing literature476

datasets such as CASAS [20] and the ADL definitions provided by Katz et al. [56].477



Version January 28, 2024 submitted to Sensors 12 of 25

We recorded a total of 511 activity sequences with 8 different volunteers across the478

three scenarios: 158 in the morning, 154 at noon, and 199 in the evening. Tables 3, 4, and479

5 show the number of activities performed by the volunteers in each scenario. Table 6480

provides a global summary of the generated dataset.481

Table 3. Summary of all recorded data from morning scenarios

Activity Subject 1 Subject 2 Subject 3 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Total / Activity

Bathe 5 3 3 3 1 1 0 0 16
Cook 5 4 4 7 2 2 0 2 26
Dress 6 4 4 1 1 1 0 2 19
Eat 5 4 3 3 1 2 0 1 19
Enter Home 0 0 0 1 0 0 0 0 1
Go To Toilets 5 4 3 1 1 1 0 1 16
Leave Home 5 4 2 2 1 2 0 1 17
Read 0 0 2 2 0 0 0 0 4
Sleep 5 4 4 0 1 2 0 1 17
Sleep in Bed 0 0 0 2 0 0 0 0 2
Wash Dishes 5 4 3 0 1 2 0 1 16
Watch TV 0 0 0 3 1 0 0 1 5

Total / Subject 41 31 28 25 10 13 0 10 158

Table 4. Summary of all recorded data from mid-day scenarios

Activity Subject 1 Subject 2 Subject 3 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Total / Activity

Bathe 5 0 1 3 0 0 0 0 9
Cook 7 6 1 3 1 4 2 4 28
Dress 7 2 0 1 0 0 0 1 11
Eat 5 2 1 3 0 2 1 2 16
Enter Home 5 2 1 2 1 2 1 2 16
Go To Toilets 8 4 1 4 1 0 0 2 20
Leave Home 5 1 1 2 1 2 1 2 15
Read 1 3 1 2 0 0 0 0 7
Sleep 2 0 0 1 0 0 0 0 3
Sleep in Bed 4 0 0 0 0 0 0 0 4
Wash Dishes 6 2 1 2 1 2 1 2 17
Watch TV 0 2 0 0 1 4 1 0 8

Total / Subject 55 24 8 23 6 16 7 15 154

Table 5. Summary of all recorded data from the evening scenarios

Activity Subject 1 Subject 2 Subject 3 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Total / Activity

Bathe 6 2 3 5 0 1 0 2 19
Cook 6 5 2 5 0 3 0 3 24
Dress 8 2 1 4 1 2 1 0 19
Eat 4 2 2 4 0 1 0 2 15
Enter Home 5 2 2 3 1 2 1 2 18
Go To Toilets 10 3 1 4 0 2 0 2 22
Leave Home 0 0 0 0 0 0 0 0 0
Read 5 1 0 0 0 1 0 0 7
Sleep 4 2 1 3 1 2 1 2 16
Sleep in Bed 5 2 3 3 1 2 1 2 19
Wash Dishes 6 2 2 2 0 1 0 2 15
Watch TV 4 3 2 7 1 3 1 4 25

Total / Subject 63 26 19 40 5 20 5 21 199

3.3.3. The Synthetic Dataset482

To replicate our real-life database in the Virtual Smart Home simulator, we first483

recreated our living lab within the simulator. The objective was to create a digital twin484

of the physical space, ensuring that each object and room was accurately represented485

with corresponding dimensions. A visual comparison between the real living lab and its486

virtual representation is shown in Figure 4.487

Next, we utilized our implementation of IoT sensors in the Virtual Smart Home488

simulator to incorporate the connected sensors present in the living lab. We equipped the489

different objects in the virtual environment with these sensors. Specifically, we outfitted490

the floors representing the various rooms with person detection sensors to simulate our491

sensitive floor (SensFloor) as depicted in Figure 4.492
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Table 6. Summary of all recorded data from all scenarios

Activity Subject 1 Subject 2 Subject 3 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Total / Activity

Bathe 16 5 7 11 1 2 0 2 44
Cook 18 15 7 15 3 9 2 9 78
Dress 21 8 5 6 2 3 1 3 49
Eat 14 8 6 10 1 5 1 5 50
Enter Home 10 4 3 6 2 4 2 4 35
Go To Toilets 23 11 5 9 2 3 0 5 58
Leave Home 10 5 3 4 2 4 1 3 32
Read 6 4 3 4 0 1 0 0 18
Sleep 11 6 5 4 2 4 1 3 36
Sleep in Bed 9 2 3 5 1 2 1 2 25
Wash Dishes 17 8 6 4 2 5 1 5 48
Watch TV 4 5 2 10 3 7 2 5 38

Total / Subject 159 81 55 88 21 49 12 46 511

Figure 4. (a) View of the living lab from a fisheye camera, (b) Representation in the Virtual Home
Simulator

The synthetic dataset was created by replicating the recorded scenarios from the493

living lab within the simulator. Several post-processing steps were performed, including494

renaming the sensors and removing certain sensors (e.g., CO2 sensors, WiFi, radio495

level sensors, noise sensor) from the real sequences that could not be implemented496

in VirtualHome or were not relevant for our project. We also binarized the activation497

values of devices such as the TV or the oven. While our real-life sensors provided power498

consumption values, we transformed them into ON or OFF states for simplicity in the499

virtual dataset.500

4. Comparison Between Synthetic Data and Real Data501

To assess the similarity between the synthetic data generated by the Virtual Smart502

Home simulator and the log sequences obtained from real-life recordings, we employed503

two comparison methods.504

Firstly, we compared the frequency of sensor activations in the synthetic data with505

that of the real data. This initial analysis provided insights into the number of sensors506

triggered during activities and allowed for a comparison between the two datasets.507

Secondly, we utilized cross-correlation [57] to measure the similarity between the508

log sequences from the real-life and synthetic data. Cross-correlation is a statistical509

measure that calculates the correlation between two sequences at different time lags.510

To validate the synthetic log sequences, we implemented an activity recognition al-511

gorithm proposed by [5]. This algorithm consists of an Embedding layer, a Bi-Directional512

LSTM (Long Short-Term Memory) layer [59], and a Softmax layer for classification. The513

Embedding layer transforms integer values into vectors, while the Bi-Directional LSTM514

is a recurrent network layer that processes time steps in both the forward and backward515

directions. This type of network is commonly used in deep learning for handling tempo-516
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ral time series or sequential data. We used the same parameters and training approach517

as described in the original paper.518

We trained the algorithm using four different tests:519

1. Training and validating on synthetic data using three subjects with leave-one-out-520

subject validation.521

2. Training and validating on real data using three subjects with leave-one-out-subject522

validation.523

3. Training the algorithm on synthetic data from one subject and validating it on the524

real data of the same subject.525

4. Training the algorithm on synthetic data from all subjects and validating it on the526

real data for each subject.527

We will present our results in three sections to validate our digital twin approach528

and draw conclusions regarding activity recognition using synthetic data.529

Firstly, in Section 4.2, we will compare the triggered sensor events between the530

synthetic and real logs. Then, in Section 4.3, we will present the results obtained using531

cross-correlation to determine the similarity between the sequences of real and synthetic532

logs. Finally, in Section 4.4, we will showcase the results obtained with the recognition533

algorithm on the data collected from simulation and reality.534

4.1. Comparison of Triggered Sensors in Real and Synthetic Logs for Similar Scenarios535

To gain an initial understanding of the synthetic data generated, we compared the536

frequency of sensor activations in the synthetic data with that of the real data.537

Figure 5 illustrates the comparison of the number of triggered sensors in the real538

dataset (in blue) and the synthetic dataset (in red) across 15 scenarios. Most scenarios539

showed a similar count of triggered sensors in both datasets. However, some scenarios540

(1, 4, 5, 9, and 13) exhibited an excess of triggered sensors in the synthetic data. Upon541

examining Table 7, we observed that these scenarios predominantly involved presence542

sensors, which detect the presence of the avatar in a specific room. The difference in543

sensor activations can be attributed to the fact that the real-life sensor did not always544

detect the volunteer, and the path chosen by the avatar in the simulator did not always545

match the movement of the volunteer during the recording experiment.546

Figure 5. Comparison graph of sensors triggered in real and synthetic logs for similar scenarios
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Table 7. Comparison table of sensors triggered in real and synthetic logs

Scenario Number Real Synthetic Excess Sensors Detected Index in Figure 5

s3_1_bis 13 14 floor_bedroom 1

s3_2_bis 15 15 2

s3_3_bis 18 18 3

s3_4_bis 10 11 floor_dining_room 4

s7_1 12 13 floor_bathroom 5

s7_2 17 17 6

s7_4 18 18 7

s7_5 15 15 8

s7_6 13 15 floor_bathroom, floor_bedroom 9

s9_1 16 16 10

s9_2 19 19 11

s9_3 18 18 12

s9_4 14 15 floor_bathroom 13

s9_5 14 14 14

s9_6 20 20 15

In conclusion, the comparison of triggered sensors between the real and synthetic547

logs for similar scenarios showed a generally close alignment. However, discrepan-548

cies were observed in scenarios, in particular for the presence sensors, which can be549

attributed to variations in detection and movement between the real-life recording and550

the simulation.551

4.2. Comparison of Triggered Sensors in Real and Synthetic Logs for Similar Scenarios552

In this section, we compared the frequency of sensor activations in the synthetic553

data with that of the real data to assess the similarity between the two datasets. The554

comparison focused on the number of triggered sensors in similar scenarios.555

To perform this analysis, we examined the number of sensors activated in both the556

real and synthetic datasets across 15 scenarios. Figure 5 illustrates the comparison, with557

the blue bars representing the real dataset and the red bars representing the synthetic558

dataset. In most scenarios, the count of triggered sensors was similar between the two559

datasets. However, some scenarios (1, 4, 5, 9, and 13) exhibited an excess of triggered560

sensors in the synthetic data.561

Upon further investigation (see Table 7), we discovered that these scenarios primar-562

ily involved presence sensors that detect the presence of the avatar in specific rooms.563

The discrepancy in sensor activations can be attributed to variations in detection and564

movement between the real-life recording and the simulation. In some cases, the real-life565

sensor did not detect the volunteer, while the simulated avatar followed a different path,566

resulting in additional sensor activations in the synthetic data.567

Overall, the comparison of triggered sensors between the real and synthetic logs for568

similar scenarios demonstrated a generally close alignment. However, differences arose569

in scenarios involving presence sensors due to variations in detection and movement.570

This analysis provides valuable insights into the similarities and discrepancies between571

the real and synthetic datasets.572
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4.3. Comparison with Cross-Correlation573

In this section, we utilized cross-correlation to compare the activation and order574

of sensors in both real and synthetic log sequences. The cross-correlation values were575

calculated for all sensors at each time point to evaluate the similarity between the two576

datasets.577

( f ∗ g)[n] =
∞

∑
m=−∞

f (m) g(m + n) (1)

The cross-correlation formulas 1 for discrete functions was used, and the cross-578

correlation values were calculated for all sensors and times in the sequences. To ensure a579

fair comparison with the longer real log sequences, we expanded the cross-correlation580

tables for synthetic sensors by duplicating the last line since the sensor values do not581

change.582

To determine the similarity between the real and synthetic log sequences, we583

multiplied the value of each sensor in the real sequence by the corresponding synthetic584

sensor value. If the values matched (e.g., both ON or both OFF), a score of 1 was assigned;585

otherwise, a score of -1 was assigned. This calculation was performed for each sensor at586

each time point, resulting in the final cross-correlation table. The score was computed as587

the sum of all cross-correlation values for the sensors at each time.588

The percentage likelihood between the two log sequences was calculated using the589

following formula:590

Percentage =
Maximum Score

(Number of Sensors in Reality × Number of Events in Reality)
× 100

Table 8 presents the results obtained for the 15 processed scenarios, including the591

similarity percentage and the average similarity across scenarios.592

Table 8. Cross correlation similarity

Subject S9 S7 S3

Scenario Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Similarity (%) 75.73% 97.40% 75.42% 75.30% 69.61% 74.42% 81.24% 93.18% 85.22% 84.73% 88.28% 79.93% 77.53% 54.73% 82.78%
Average Similarity (%) 77.98% 86.53% 73.74%

The obtained percentages were generally above 70%, except for one case that593

yielded 54.73%. Upon closer examination, we identified that the SensFloor sensor could594

be activated and deactivated multiple times in the same room, leading to variations in595

the log sequences. An example of such variations in the real log sequence is presented in596

Table 9, which corresponds to the scenario with the lowest similarity percentage.597

In conclusion, the cross-correlation analysis revealed that the synthetic log se-598

quences exhibited a high level of similarity to the real sequences, with similarity per-599

centages exceeding 70% and reaching up to 86.53%. This indicates that the digital twin600

approach allowed us to generate synthetic data that closely resembled the real-world601

data. Although variations were observed in some scenarios due to the presence sensors,602

the overall comparison demonstrated a remarkable alignment between the two datasets.603

These findings suggest that the synthetic data generated through the digital twin ap-604

proach can be effectively utilized for various applications, including activity recognition605

algorithms. In the following subsection 4.4, we will investigate whether this level of606

similarity is sufficient to achieve comparable performance using an activity recognition607

algorithm.608
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2021-07-12 18:01:29.112556 floor_livingroom OFF watch_tv
2021-07-12 18:03:33.039082 floor_livingroom ON watch_tv
2021-07-12 18:03:34.014050 floor_livingroom OFF watch_tv
2021-07-12 18:04:18.782342 floor_livingroom ON watch_tv
2021-07-12 18:04:19.785484 floor_livingroom OFF watch_tv
2021-07-12 18:04:21.030509 floor_livingroom ON watch_tv
2021-07-12 18:04:22.030509 floor_livingroom OFF watch_tv
2021-07-12 18:04:25.854238 floor_livingroom ON watch_tv
2021-07-12 18:04:29:084238 floor_livingroom OFF watch_tv
2021-07-12 18:05:02.588711 floor_livingroom ON watch_tv
2021-07-12 18:05:04.102735 floor_livingroom OFF watch_tv
2021-07-12 18:05:24.473798 floor_livingroom ON watch_tv
2021-07-12 18:05:26.010093 floor_livingroom OFF watch_tv
2021-07-12 18:06:09.667039 floor_livingroom ON watch_tv
2021-07-12 18:06:10.909138 floor_livingroom OFF watch_tv
2021-07-12 18:06:30.451480 pressure_armchair OFF watch_tv
2021-07-1218:06:34.380592 floor_livingroom ON watch_tv
2021-07-12 18:06:45.037284 floor_livingroom OFF watch_tv

Table 9. Activation/deactivation of the SensFloor in the real log sequence : s7_activity_6

4.4. Activity recognition609

In our activity recognition tests, we did not consider the time of day. This limitation610

arose because we were unable to directly manage time within the VirtualHome envi-611

ronment. Instead, we relied on post-processing techniques to estimate action durations,612

which may not accurately represent real-world timing. Consequently, distinguishing613

between different meal times (morning, noon, or evening) during eating and cooking614

activities becomes challenging for an algorithm.615

To address this challenge, we opted to group the specific “Eat ...” labels together616

under a general label, “Eat”. This grouping included activities such as (1) “Eat breakfast”,617

(2) “Eat lunch”, and (3) “Eat dinner”. Similarly, we combined the various cooking618

activities into a single label, “Cook”, encompassing (1) “Cook breakfast”, (2) “Cook619

lunch”, and (3) “Cook dinner”.620

We conducted four different tests using the activity recognition algorithm proposed621

by [5], as described previously at the beginning of this section.622

4.4.1. Experiments 1 and 2: Leave-One-Subject-Out Cross Validations623

The objective of this step is to assess the performance of the activity recognition624

algorithm on both real and synthetic data. To achieve this, we employed the Leave-625

One-Subject-Out cross-validation method, which is a variation of Leave-One-Out cross-626

validation [60]. This method is commonly used for datasets with limited data or when627

the data are associated with distinct entities.628

In this experiment, we conducted two cross-validations: one using only synthetic629

data and the other using only real data. With three subjects in our dataset, the cross-630

validation involved using one subject for testing and the remaining two subjects for631

training. We repeated this process by rotating the subject used for testing, enabling632

validation on each subject’s data. Finally, we compared the results obtained from the633

synthetic and real Leave-One-Subject-Out cross-validations.634

The results of the two cross-validations are presented in Tables 10 and 11. These635

results demonstrate that the algorithm can be trained with both real and synthetic data,636

yielding comparable outcomes. Notably, there is a high degree of similarity in the637

results for Subject “9”. However, for the other two subjects, we observe more differences638

between the results of synthetic and real data. Specifically, the performance, as measured639

by F1-score and Balanced Accuracy, is better for Subject “7” and “3” with synthetic data.640
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Table 10. Experiment 1: Leave-One-Subject-Out cross-validations for real data

Subject 9 Subject 7 Subject 3

Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support

Bathe 40.00% 100.00% 57.14% 2 66.67% 100.00% 80.00% 2 100.00% 75.00% 85.71% 4
Cook 50.00% 30.00% 37.50% 10 25.00% 16.67% 20.00% 6 50.00% 100.00% 66.67% 4
Dress 100.00% 100.00% 100.00% 3 50.00% 33.33% 40.00% 3 66.67% 100.00% 80.00% 2
Eat 30.00% 50.00% 37.50% 6 12.50% 25.00% 16.67% 4 100.00% 33.33% 50.00% 3
Enter Home 100.00% 100.00% 100.00% 4 75.00% 100.00% 85.71% 3 60.00% 100.00% 75.00% 3
Go To Toilets 100.00% 20.00% 33.33% 5 100.00% 33.33% 50.00% 3 50.00% 50.00% 50.00% 2
Leave Home 100.00% 100.00% 100.00% 4 60.00% 100.00% 75.00% 3 0.00% 0.00% 0.00% 2
Sleep 100.00% 100.00% 100.00% 3 0.00% 0.00% 0.00% 4 0.00% 0.00% 0.00% 2
Wash Dishes 83.33% 100.00% 90.91% 5 100.00% 50.00% 66.67% 4 100.00% 100.00% 100.00% 4
Watch TV 100.00% 100.00% 100.00% 7 83.33% 100.00% 90.91% 5 100.00% 100.00% 100.00% 2

Accuracy 71.43% 51.35% 71.43%
Balanced Accuracy 80.00% 55.83% 65.83%
Macro Avg 80.33% 80.00% 75.64% 49 57.25% 55.83% 52.50% 37 62.67% 65.83% 60.74% 28
Weighted Avg 77.07% 71.43% 70.11% 49 54.19% 51.35% 49.19% 37 68.33% 71.43% 65.88% 28

Table 11. Experiment 2: Leave-One-Subject-Out cross-validations for synthetic data

Subject 9 Subject 7 Subject 3

Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support

Bathe 100.00% 100.00% 100.00% 2 100.00% 50.00% 66.67% 2 100.00% 75.00% 85.71% 4
Cook 100.00% 20.00% 33.33% 10 75.00% 100.00% 85.71% 6 0.00% 0.00% 0.00% 4
Dress 100.00% 100.00% 100.00% 3 0.00% 0.00% 0.00% 3 100.00% 100.00% 100.00% 2
Eat 40.00% 100.00% 57.14% 6 57.14% 100.00% 72.73% 4 100.00% 100.00% 100.00% 3
Enter Home 100.00% 75.00% 85.71% 4 75.00% 100.00% 85.71% 3 100.00% 100.00% 100.00% 3
Go To Toilets 100.00% 60.00% 75.00% 5 66.67% 66.67% 66.67% 3 50.00% 50.00% 50.00% 2
Leave Home 75.00% 75.00% 75.00% 4 100.00% 66.67% 80.00% 3 100.00% 100.00% 100.00% 2
Sleep 100.00% 100.00% 100.00% 3 100.00% 25.00% 40.00% 4 100.00% 100.00% 100.00% 2
Wash Dishes 71.43% 100.00% 83.33% 5 100.00% 75.00% 85.71% 4 20.00% 25.00% 22.22% 4
Watch TV 85.71% 85.71% 85.71% 7 62.50% 100.00% 76.92% 5 100.00% 100.00% 100.00% 2

Accuracy 73.47% 72.97% 67.86%
Balanced Accuracy 81.57% 68.33% 75.00%
Macro Avg 87.21% 81.57% 79.52% 49 73.63% 68.33% 66.01% 37 77.00% 75.00% 75.79% 28
Weighted Avg 85.66% 73.47% 71.65% 49 73.41% 72.97% 68.19% 37 70.71% 67.86% 68.99% 28

Examining the confusion matrices in Figure 6, we observe more activity confusions641

when using real data. This finding suggests that real data pose greater complexity for642

the algorithm, likely due to sensor recording errors in the real apartment.643

In general, the confusion matrices reveal certain patterns. For example, activities644

such as “Enter Home” and “Leave Home” are often confused, which is logical since they645

trigger similar types of sensors (entrance floor, principal door, etc.). Similarly, “Bathe”646

and “Go To Toilet” activities show confusion, likely because one may wash their hands647

after using the toilet, and in our apartment, the toilet is located in the same room as648

the bathroom. “Reading” and “Watching TV” activities can also be easily confused as649

they occur in the same room and trigger similar types of sensors. Additionally, “Wash650

Dishes” and “Cook” activities, being in the same room, are occasionally confused by the651

algorithm.652

Comparing the confusion matrices for real and synthetic data, we observe that the653

aforementioned confusions occur in both cases. For instance, the activity “Read” is not654

correctly recognized in both synthetic and real data for Subject “3”, although the scores655

are slightly higher for real data. This difference can be attributed to the richness of real656

data, which exhibits more sensor activations in the sequence. Moreover, the avatar’s657

trajectory in simulation can introduce sensor activations that are not correlated with the658

current activity. In contrast, during the real recordings, subjects pay attention to room659

transitions, while the avatar does not, resulting in sensor activations from other rooms660

that disrupt activity sequences.661
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(a) Subject 3 real data (b) Subject 7 real data (c) Subject 9 real data

(d) Subject 3 synthetic data (e) Subject 7 synthetic data (f) Subject 9 synthetic data

Figure 6. Experiment 1 an 2: Leave-One-Subject-Out cross-validations confusion matrices

In conclusion, despite the logical confusions made by the algorithm, the recognition662

results obtained are quite similar for real and synthetic data. In the next subsection 4.4.2,663

we will investigate the extent to which synthetic data can be effectively used for activity664

recognition in our digital twin.665

4.4.2. Experiment 3: One-to-One - Training on Synthetic Data and Testing on Real Data666

Training

Synthetic Data

Test

Real Data

Figure 7. Experiment 3: One to One
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In this experiment, we trained the model using synthetic data from a subject and667

tested the trained algorithm with the real data of the same subject (see details in Figure668

7). The objective was to determine whether an algorithm trained on synthetic data could669

effectively recognize activities in real data.670

Analyzing Table 12 and Confusion Matrices 8, we can initially observe that the671

synthetic data generated for each subject enabled training and recognition of activity672

sequences for the corresponding real datasets (one subject at a time). Subjects “9” and673

“7” achieved good performance in terms of Accuracy, Balanced Accuracy, and F1-score.674

Notably, subject “7” exhibited the best performance among the subjects. For these two675

subjects, the synthetic data appeared realistic enough to achieve activity recognition676

with an accuracy of over 70% for both subjects.677

In contrast, subject “3” displayed the lowest performance. It seems that the synthetic678

data generated for this subject were insufficient to enable accurate activity recognition.679

The poor performance for this subject suggests that there are differences between the680

synthetic and real data. A closer examination of the real data for subject “3” reveals681

sequences that are interfered with by sensors triggering unrelated to the activity. For682

example, the presence sensor on the floor is regularly triggered in the living room683

while subject “3” is in the kitchen. This disturbance occurs due to a sensor malfunction,684

detecting a second presence in the living room. Such malfunctions are not anticipated or685

simulated in the synthetic data.686

Additionally, we observed that the activity “Bathe” was not recognized for subject687

“9”, whereas it was recognized with 100% accuracy for subject “7”. Subject “3” had four688

activity classes out of ten that were not recognized. These results indicate that synthetic689

data can be used to train an algorithm and recognize activities in real data. However,690

relying solely on activity data from a single subject may not always be sufficient. Fur-691

thermore, the performance can be degraded by sensor malfunctions in real conditions,692

which can disrupt the activity recognition algorithm. Therefore, incorporating more data693

and variability into the training dataset is necessary to address these challenges.694

Table 12. Experiment 3: One to One - results of multiple metrics

S9 S7 S3

Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support

Bathe 0.00% 0.00% 0.00% 2 100.00% 100.00% 100.00% 2 50.00% 100.00% 66.67% 4
Cook 90.00% 90.00% 90.00% 10 54.55% 100.00% 70.59% 6 75.00% 75.00% 75.00% 4
Dress 75.00% 100.00% 85.71% 3 100.00% 100.00% 100.00% 3 100.00% 50.00% 66.67% 2
Eat 50.00% 50.00% 50.00% 6 100.00% 75.00% 85.71% 4 0.00% 0.00% 0.00% 3
Enter Home 50.00% 75.00% 60.00% 4 100.00% 33.33% 50.00% 3 60.00% 100.00% 75.00% 3
Go To Toilets 66.67% 80.00% 72.73% 5 75.00% 100.00% 85.71% 3 0.00% 0.00% 0.00% 2
Leave Home 40.00% 50.00% 44.44% 4 60.00% 100.00% 75.00% 3 0.00% 0.00% 0.00% 2
Sleep 50.00% 33.33% 40.00% 3 100.00% 75.00% 85.71% 4 100.00% 50.00% 66.67% 2
Wash Dishes 100.00% 80.00% 88.89% 5 100.00% 25.00% 40.00% 4 44.44% 100.00% 61.54% 4
Watch TV 100.00% 85.71% 92.31% 7 100.00% 80.00% 88.89% 5 0.00% 0.00% 0.00% 2

Accuracy 71.43% 78.38% 57.14%
Balanced Accuracy 64.40% 78.83% 47.50%
Macro Avg 62.17% 64.40% 62.41% 49 88.95% 78.83% 78.16% 37 42.94% 47.50% 41.15% 28
Weighted Avg 70.78% 71.43% 70.39% 49 87.36% 78.38% 76.91% 37 44.92% 57.14% 46.59% 28
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(a) Subject 9 real data (b) Subject 7 real data (c) Subject 3 real data

Figure 8. Experiment 3: One to One - confusion matrices

4.4.3. Experiment 4: Many-to-One - Training on Synthetic Data and Testing on Real Data695

Training

Synthetic Data

Test

Real Data

Figure 9. Experiment 4: Many to One

The objective of this experiment was to train the algorithm using all synthetic696

data and then test it on the real data of each subject independently (see Figure 9). The697

purpose was to evaluate whether increasing the amount of data provided by the synthetic698

data from different subjects would improve the algorithm’s capabilities in recognizing699

daily activities. In the previous section, we observed that training an algorithm on700

synthetic data and testing it in real conditions can be successful. However, the quantity701

of training data was not very representative and still relatively close to the real data. The702

performance could be enhanced by presenting the algorithm with examples of different703

lifestyles within the same living environment, allowing for better generalization.704

Table 13 demonstrates that the algorithm achieved higher classification scores (close705

to 80%) for all subjects compared to the previous experiment. Subject “7” maintained706

very similar performance to the previous experiment. However, subjects “9” and “3”707

showed notable improvement, particularly subject “3”, which had previously exhibited708

the worst results. Subject “3” experienced an increase in accuracy and balanced accuracy709

from 57.14% and 47.50% to 78.57% and 81.67%, respectively.710
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Table 13. Experiment 3: Many to One - results of multiple metrics

S9 S7 S3

Precision Recall F1-score Support Precision Recall F1-score Support Precision Recall F1-score Support

Bathe 100.00% 100.00% 100.00% 2 100.00% 100.00% 100.00% 2 100.00% 75.00% 85.71% 4
Cook 100.00% 80.00% 88.89% 10 50.00% 100.00% 66.67% 6 100.00% 25.00% 40.00% 4
Dress 100.00% 100.00% 100.00% 3 100.00% 66.67% 80.00% 3 100.00% 100.00% 100.00% 2
Eat 50.00% 66.67% 57.14% 6 100.00% 50.00% 66.67% 4 100.00% 66.67% 80.00% 3
Enter Home 66.67% 50.00% 57.14% 4 100.00% 100.00% 100.00% 3 75.00% 100.00% 85.71% 3
Go To Toilets 100.00% 80.00% 88.89% 5 100.00% 100.00% 100.00% 3 66.67% 100.00% 80.00% 2
Leave Home 100.00% 75.00% 85.71% 4 100.00% 100.00% 100.00% 3 100.00% 50.00% 66.67% 2
Sleep 37.50% 100.00% 54.55% 3 66.67% 100.00% 80.00% 4 100.00% 100.00% 100.00% 2
Wash Dishes 100.00% 80.00% 88.89% 5 0.00% 0.00% 0.00% 4 57.14% 100.00% 72.73% 4
Watch TV 100.00% 85.71% 92.31% 7 100.00% 80.00% 88.89% 5 66.67% 100.00% 80.00% 2

Accuracy 79.59% 78.38% 78.57%
Balanced Accuracy 81.74% 79.67% 81.67%
Macro Avg 85.42% 81.74% 81.35% 49 81.67% 79.67% 78.22% 37 86.55% 81.67% 79.08% 28
Weighted Avg 87.33% 79.59% 81.67% 49 77.48% 78.38% 74.89% 37 86.44% 78.57% 76.58% 28

(a) Subject 9 real data (b) Subject 7 real data (c) Subject 3 real data

Figure 10. Experiment 4: Many to One - confusion matrices

Furthermore, Table 13 and Figure 10 reveal that more activity classes were correctly711

identified. The introduction of additional synthetic data from other subjects within the712

same apartment led to improved classification performance. The contribution of data713

from different subjects introduced variability in the execution of activities, enabling the714

algorithm to better generalize and capture sensor behavior during activities. Having a715

diverse range of examples is crucial for training a deep learning algorithm.716

In conclusion, by utilizing more synthetic data, the algorithm demonstrated in-717

creased performance in real conditions. The inclusion of behavioral variability from718

different subjects facilitated better generalization. This generalization resulted in signifi-719

cant improvements, particularly for subject “3”.720

4.5. Summary721

The experiments conducted in this section yielded valuable insights. The results722

demonstrated that the simulator has the ability to generate synthetic data that closely723

resemble real-world data. The activity recognition algorithm performed similarly on both724

synthetic and real data, indicating that training the algorithm solely on synthetic data725

can effectively recognize activities in real-world scenarios. Moreover, when the entire set726

of generated synthetic data was utilized, the algorithm’s performance improved for each727

subject. This improvement can be attributed to the increased variability and examples728

provided by the additional synthetic data, allowing the algorithm to better generalize729

and capture the behavior of sensors during different activities.730
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5. Conclusion731

The limitations of existing datasets, such as their limited coverage of activities,732

lifestyles, and house configurations, pose challenges for activity recognition algorithms.733

These algorithms trained on specific datasets may not be applicable to different envi-734

ronments due to the tailored nature of their training data. Collecting new datasets is a735

costly and time-consuming process, requiring volunteers to live in the environment and736

label activities for an extended period. This presents practical difficulties and a risk of737

mislabeling.738

To address the data scarcity challenge and bridge the gap between training data739

and real-world use cases, we proposed the use of a digital twin concept. By enhancing740

the VirtualHome simulation environment, we simulated an intelligent environment with741

home automation sensors, replicating a real smart apartment. Working with volunteers,742

we generated data in the actual smart apartment through various activity scenarios.743

Subsequently, we replicated the volunteers’ activities in the digital twin of the apartment744

using an avatar. Through comprehensive analysis and metric evaluation, we observed745

the similarity between the time series generated by the simulator and those generated746

by the volunteers.747

The synthetic sensor logs allowed us to train a HAR algorithm, which we then748

validated on the real data collected by the volunteers. Our experiments demonstrated749

that the algorithm achieved robust activity recognition performance on the real data,750

with an average F1 score of approximately 80%. It is important to note that these751

experiments were conducted on a relatively small dataset, and further validation with752

larger amounts of data is necessary. Additionally, future work should involve continuous753

data generation from residents living permanently in the target environment to further754

validate the algorithm’s performance.755

Nevertheless, our findings indicate that utilizing a digital twin to generate synthetic756

data resembling the target environment shows promise for training HAR algorithms.757

In our future work, we plan to expand the experiment by generating more synthetic758

data from additional volunteers’ activities. We also aim to extend the evaluation to a759

larger number of houses to validate the generalizability of our approach. Furthermore,760

we will explore the possibility of training the algorithm from scratch in a house without761

reproducing the labeled activities of the final resident, solely utilizing the activity scripts762

provided by our volunteers.763

By leveraging the concept of digital twins and generating realistic synthetic data,764

we can mitigate the challenges posed by limited datasets and enhance the applicability765

of HAR algorithms in real-world environments.766
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