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G W N e

Abstract: One of the challenges in the field of human activity recognition in smart homes based
on IoT sensors is the variability in the recorded data. This variability arises from differences in
home configurations, sensor network setups, and the number and habits of inhabitants, resulting
in a lack of data that accurately represents the application environment. Although simulators have
been proposed in the literature to generate data, they fail to bridge the gap between training and
field data or produce diverse datasets. In this article, we propose a solution to address this issue
by leveraging the concept of digital twins to reduce the disparity between training and real-world
data and generate more varied datasets. We introduce the Virtual Smart Home, a simulator
specifically designed for modeling daily life activities in smart homes, which is adapted from the
Virtual Home simulator. To assess its realism, we compare a set of activity data recorded in a
real-life smart apartment with its replication in the Virtual Smart Home simulator. Additionally,
we demonstrate that an activity recognition algorithm trained on the data generated by the Virtual
Smart Home simulator can be successfully validated using real-life field data.

Keywords: Smart-Home, machine learning, home automation, simulator, database, digital twin,
transfer learning

1. Introduction

Over the past few decades, there has been a significant increase in the adoption of
smart homes and real-world testbeds, driven by the proliferation of Internet of Things
(IoT) devices. These devices enable the detection of various aspects within homes, such
as door openings, room luminosity, temperature, humidity, and more. Human Activity
Recognition (HAR) algorithms in smart homes have become crucial for classifying
streams of data from IoT sensor networks into Activities of Daily Living (ADLs). These
algorithms enable smart homes to provide adaptive services, including minimizing
power consumption, improving healthcare, and enhancing overall well-being.

Despite the notable advancements in machine learning techniques and the im-
proved performance of HAR algorithms, their practical application to real-world test
cases continues to encounter challenges. These challenges primarily stem from the
variability and sparsity of sensor data, leading to a significant mismatch between the
training and test sets.

1.1. A Variable and Sparse Unevenly Sampled Time Series

While HAR based on video data has made significant strides in performance [1],
HAR in smart homes continues to encounter specific challenges, as highlighted in
the survey by Bouchabou et al. [2]. Recent advances in HAR algorithms, such as
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convolutional neural networks [3] and fully connected networks [4], along with sequence
learning methods like long-short term memory [5], have contributed to advancements in
the field. However, the task of recognizing ADLs in a smart home environment remains
inherently challenging, primarily due to several contributing factors:

e  Partial observability and sparsity of the data: The input data in HAR consists of
traces captured by a variety of sensors, including motion sensors, door sensors,
temperature sensors, and more, integrated into the environment or objects within
the house [6]. However, each sensor has a limited field of view, resulting in most
of the residents” movements going unobserved by the sensor network in a typical
smart home setup. Unlike HAR in videos, where the context of human actions,
such as objects of interest or the position of obstacles, can be captured in the images,
the sparsity of ambient sensors in HAR does not provide information beyond their
field of view. Each sensor activation alone provides limited information about
the current activity. For example, the activation of a motion sensor in the kitchen
could indicate activities such as "cooking," "washing dishes," or "housekeeping."
Therefore, the information from multiple sensors needs to be combined to infer
the current activity accurately. Additionally, each sensor activation provides only
a partial piece of information about the activity and the state of the environment,
unlike videos where both the agent performing the activity and the environment
state are visible. Consequently, the time series of sensor activity traces cannot be
approximated as a Markov chain. Instead, estimating the context or current state of
the environment relies on past information and the relationship with other sensors.

*  Variability of the data: Activity traces between different households exhibit signifi-
cant variations. The variability arises from differences in house structures, layouts,
and equipment. House layouts can vary in terms of apartments, houses with
gardens, houses with multiple floors, the presence of bathrooms and bedroom:s,
open-plan or separate kitchens, and more. The number and types of sensors can
also differ significantly between homes. For instance, datasets like MIT [7] use 77-84
sensors for each apartment, while the Kasteren dataset [8] uses 14-21 sensors. The
ARAS dataset [9] includes apartments with 20 sensors, while the Orange4Home
dataset [10] is based on an apartment equipped with 236 sensors. All these factors,
including home topography, sensor count, and their placement, can result in radical
differences in activity traces. The second cause of variability stems from household
composition and residents’ living habits. ADLs vary depending on the residents’
habits, hobbies, and daily routines, leading to different class balances among ADLs.
For example, the typical day of a student, a healthy adult, or an elderly person with
frailty will exhibit distinct patterns. Furthermore, the more residents there are, the
more the sensor activation traces corresponding to each resident’s activities become
intertwined, leading to complex scenarios involving composite actions, concurrent
activities, and interleaved activities.

Therefore, algorithms need to analyze sparse and irregular time series data to gener-
alize across various house configurations, equipment, households, and habits. Training
machine learning algorithms to be deployed in such diverse scenarios necessitates
training data that encompasses this wide variability.

1.2. Digital Twins for Generating Similar Data

To bridge the gap between training data and real-world usage data, data generation
can be a potential solution, particularly through the concept of digital twins. A digital
twin refers to a virtual representation that serves as a real-time digital counterpart of a
physical object or process [11,12]. In the context of HAR, a digital twin could be a virtual
replica of a target house, complete with the same installed sensors. Within this digital
environment, one or multiple avatars can simulate ADLs by modeling the behaviors
of residents. This way, the digital twin can be used to fine-tune algorithms before their
deployment in the actual target house.
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Moreover, digital twins have the potential to generate data representing a vast range
of house configurations, household habits, and resident behaviors, thereby accelerating
simulations, facilitating automatic labeling, and eliminating the cost of physical sensors.
This extensive dataset can then be utilized for pre-training machine learning models.
Furthermore, a digital twin can aid in evaluating the correct positioning and selection of
sensors to recognize a predefined list of activities.

Digital twin models have gained significant interest in various application domains,
such as manufacturing, aerospace, healthcare, and medicine [13]. While digital twins for
smart homes are relatively less explored, digital twins for buildings have been studied
extensively. Ngah Nasaruddin et al. [14] define a digital twin of a building as the
interaction between the interior environment of a real building and a realistic virtual
representation model of the building environment. This digital twin enables real-time
monitoring and data acquisition. For example, digital twins of buildings have been
utilized in [15] to determine the strategic locations of sensors for efficient data collection.

1.3. Contributions

The gap between training and testing data in HAR for smart homes presents
significant challenges due to the variability and sparsity of activity traces. In this
study, we address this issue by exploring the possibility of generating data suitable for
deployment scenarios.

Our contributions are as follows:

¢  We propose a novel approach that paves the way for digital twins in the context of
smart homes.

*  We enhance the Virtual Home [48] video-based data simulator to support sensor-
based data simulation for smart homes, which we refer to as VirtualSmartHome.

*  We demonstrate, through an illustrative example, that we can replicate a real
apartment to generate data for training an ADL classification algorithm.

*  Our study validates the effectiveness of our approach in generating data that
closely resembles real-life scenarios and enables the training of an ADL recognition
algorithm.

*  We outline a tool and methodology for creating digital twins for smart homes,
encompassing a simulator for ADLs in smart homes and a replicable approach for
modeling real-life apartments and scenarios.

*  The proposed tool and methodology can be utilized to develop more effective
ADL classification algorithms and enhance the overall performance of smart home
systems.

In the next section (Section 2), we provide a comprehensive review of the state-
of-the-art approaches in HAR algorithms, ADL datasets, and home simulators. Sub-
sequently, in Section 3, we introduce the VirtualSmartHome simulator that we have
developed, along with our methodology for replicating real apartments and human
activities. Moving forward, in Section 4, we present an evaluation of our simulator,
comparing the synthetic data produced by the VirtualSmartHome simulator with real
data from a smart apartment. We also demonstrate the potential of our approach by
employing the generated datasets for a HAR algorithm.

2. Related Work

While recent HAR algorithms have demonstrated improved recognition rates when
trained and tested on the same households, their generalizability across different house-
holds remains limited. The existing ADL datasets also have their own limitations,
prompting the exploration of smart home simulators to generate relevant test data. In
this section, we discuss the limitations of current HAR algorithms and ADL datasets,
and review the available home simulators.
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2.1. Machine Learning Algorithms for Activity Recognition based on Smart Home IoT Data

Numerous methods and algorithms have been studied for HAR in the smart home
domain. Early approaches utilized machine learning techniques such as Support Vector
Machines (SVM), Naive Bayes networks, or Hidden Markov Models (HMM), as reviewed
in [16]. However, these models lack generalization and adaptability, as they are designed
for specific contexts and rely on hand-crafted features, which are time-consuming to
produce and limit the models” generalization and adaptability.

More recently, deep learning techniques have emerged as a promising approach
due to their ability to serve as end-to-end models, simultaneously extracting features
and classifying activities. These models are predominantly based on Convolutional
Neural Networks (CNN) or Long Short-Term Memory (LSTM).

CNN structures excel at feature extraction and pattern recognition. They have two
key advantages for HAR. Firstly, they can capture local dependencies, meaning they
consider the significance of nearby observations that are correlated with the current event.
Secondly, they are scale-invariant, capable of handling differences in step frequency or
event occurrence. For example, Gochoo et al. [17] transformed activity sequences into
binary images to leverage 2D CNN-based structures. Singh et al. [18] applied a 1D CNN
structure to raw data sequences, demonstrating their high feature extraction capability.
Their experiments demonstrated that the CNN 1D architecture yields comparable results
to LSTM-based models while being more computationally efficient. However, LSTM-
based models still outperform the CNN 1D architecture..

LSTM models are specifically designed to handle time sequences and effectively
capture both long and short-term dependencies. In the context of HAR in smart homes,
Liciotti et al. [5] extensively investigated various LSTM structures and demonstrated that
LSTM surpasses traditional HAR approaches in terms of classification scores without
the need for handcrafted features. This superiority can be attributed to LSTM’s ability to
generate features that encode temporal patterns, as highlighted in [19] when compared
to conventional machine learning techniques. As a result, LSTM-based structures have
emerged as the leading models for tackling the challenges of HAR in the smart home
domain.

2.2. Activities of Daily Living Datasets

Unfortunately, in order for a deep learning model to achieve sufficient generaliza-
tion, a large amount of high-quality field data is required.

Several public real home datasets [7-10,20] are available, and an overview of sensor-
based datasets used in HAR for smart homes is provided by De-La-Hoz-Franco et al.
[21]. However, these datasets have limitations in terms of the number of activities and
occupants considered, sensor usage, and the type of residents.

The currently available public datasets are insufficient to cover the probability
distribution of all possible HAR data and enable algorithms to generalize to application
test data.

Table 1. Cost of CASAS components: “smart home in a box” [20]

Components  Server .nght & Door Sensors  Relay Temperature Sensors ~ Total Cost
Motion Sensors

Unit Price $350 $85 $75 $75 $75

Quantity 1 24 1 2 2

Total Price $350 $2,040 $75 $150 $150 $2,765

Moreover, collecting new datasets is a costly and challenging task. For instance,
Cook et al. [20] developed a lightweight and easy-to-install smart home design called
"a smart home in a box," aimed at efficiently collecting data once installed in the en-
vironment. However, the cost of components for the "smart home in a box" project
[20], as shown in Table 1, amounted to $2,765 in 2013. Although the cost of sensors has



Version January 28, 2024 submitted to Sensors 5 of 25

199

decreased over time, there are still challenges in accessing various types of houses and
inhabitants. Additionally, collecting data from real inhabitants is time-consuming, and
the recording cannot be accelerated like in a simulation. Furthermore, the data requires
ground truth, including data stream segmentation (start and end time) and class labels,
which necessitates significant user investment and is prone to errors due to manual
annotations, as described in [2].

Considering these challenges, researchers suggest generating data using simulation
environments.

The objective of simulators in the context of smart homes is to generate simulated
data from domestic sensors that accurately reflect real-world scenarios. The production
of synthetic data through simulation offers several advantages, including the ability to:
1) collect perfectly controlled ground truth data, and 2) introduce diversity in terms of
environments and living habits.

2.3. Existing Home Simulators

In the field of HAR, the collection of data and the creation of physical environments
with sensors pose significant challenges, including sensor positioning, installation, and
configuration. Additionally, the collection of datasets is often limited by ethical protocols
and user participation.

Table 2. Comparison of simulation environments : table indicating for each simulator : its approach (model-based, interactive or

hybrid), its development environment, the language of the API, the number or name of the apartment recorded, its apartment designer

/ editor, its application and its output (videos or sensor logs); whether it is open source, is multi-agent, records objects, uses activity

scripts, provides a 3D visualisation; and whether it records IoT Sensors and their numnert

Simulators Open Approach Multi Environment API Apartment Objects Scripts IoT Sensors Designer/Editor Visual. Application Output
AI2Thor [22] Yes Model Yes Unity Python 17 609 No No Yes 3D Robot Interaction  Videos
iGibson [23] Yes Model Yes Bullet Python No 15 570 No 1 Yes None Robot Interaction  Videos
Sims4Action [24] No Model Yes Sims 4 No None NA No No Game Interface 3D Human Activity ~ Videos
Ai Habitat [25] Yes Model Yes C++ Python None NA No No Yes None  Human Activity ~ Sens. Log
Open SHS [26] Yes Hybrid No Blender Python None NA No 29 (B) With Blender 3D Human Activity ~ Sens. Log
SESim [27] Yes Model No Unity NA NA Yes Yes 5 Yes 3D Human Activity ~ Sens. Log
Persim 3D [28] No Model No Unity C# Gator Tech  Yes No Yes (B) Yes 3D Human Activity ~ Sens. Log
IE Sim [29] No Hybrid No NA NA NA Yes No Yes (B) Yes 2D Human Activity ~ Sens. Log
SIMACT [30] Yes Model No JME Java 3D kitchen  Yes Yes Yes (B) With Sketchup 3D Human Activity ~ Sens. Log
Park et al [31] No Interactive No Unity NA 1 Yes No NA With Unity 3D Human Activity ~ Sens. Log
Francillette et al [32]  Yes Hybrid Yes Unity NA NA Yes Yes 8 (Band A) With Unity 3D Human Activity ~ Sens. Log
Buchmayretal [33] No Interactive No NA NA NA Yes No Yes (B) NA 3D Human Activity ~ Sens. Log
Armac et al. [34] No Interactive  Yes NA NA None Yes No Yes (B) Yes 2D Human Activity ~ Sens. Log
VirtualHome [35] Yes Hybrid Yes Unity Python 7 308 Yes No Yes 3D Human Activity  Videos

200

201

Simulation platforms have been widely used in various domains, and there has been
a recent surge of interest in developing simulators to represent indoor environments,
as highlighted by Golestan et al. [36], see Table 2. Simulation tools offer scalability,
flexibility, and extensibility, making them suitable for a wide range of contexts and
large-scale applications. They enable rapid, repeatable, and cost-effective prototyping
of applications. For example, Bruneau et al. [38] demonstrated that users with basic
software development skills can simulate a simple indoor environment in just one hour
on average, whereas a similar task would require much more time in the real world.

Some research focuses on providing photorealistic representations of environments
to train computer vision models [25,39,40]. Other simulators incorporate actionable
objects, allowing agents to learn manipulation and interaction with objects. These
advancements have generated growing interest in studying embedded intelligence
in home environments and building robots capable of performing household tasks,
following instructions, or collaborating with humans at home [41-43].

Designing and creating indoor simulation environments is not a straightforward
task. Numerous parameters and variabilities that impact daily life must be considered,
such as the type and structure of the house and external events like changes in tem-
perature or lighting throughout the day or across seasons. The development of such
simulation environments is expensive and time-consuming. As a result, recent research
has explored the use of video game platforms that offer sophisticated and successful
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simulation environments. For instance, Roitberg et al. [24], Cao et al. [44] utilized these
environments to generate video data of human activities. However, the use of such
environments is limited due to their closed and proprietary nature, making it challenging
to incorporate additional functionalities.

Other works have introduced specialized simulation platforms focused on human
modeling, providing better control over activities [45]. According to Synnott et al. [46],
there are two approaches to designing smart home environment simulators: interaction-
based and model-based approaches.

Interactive approaches involve a virtual environment (2D or 3D scenario) where
users can act as avatars, interacting with the environment. Most papers in the field
adopt this approach for agent modeling because it offers greater variation in agent traces
compared to model-driven approaches, especially when a sufficient number of users
interact with the simulators.

For example, Park et al. [31] proposed CASS, a simulator that helps designers detect
inconsistencies in a defined set of rules related to sensor readings, occupants’ locations,
and actuators. Users interact with the simulator through an interface to manipulate the
simulated environment.

Buchmayr et al. [33] presented a simulator that models binary sensors (e.g., contact
switches, motion and pressure sensors, temperature sensors) and incorporates faulty
sensor behaviors by introducing noise signals to the readings. Users can generate agent
traces by interacting with any sensor through a user interface.

Armac and Retkowitz [34] developed a simulator for residential buildings to gener-
ate synthetic ADL datasets. The simulator requires designers to define accessible and
inaccessible areas (obstacles) and place devices in an indoor environment. Users can
interact with virtual agents to

produce agent traces by interacting with environmental objects.

Interactive approaches offer accurate and realistic simulations since each action or
movement is performed by a real human. However, generating large amounts of data
through interactive approaches can be costly and requires significant effort from users.
Thus, these approaches are typically suitable for testing single activities or short runs.

On the other hand, model-based approaches involve specifying a reference model
for the simulation. The level of abstraction in defining activities determines the precision
of the modeled behavior. Kamara et al. [47] argued that this method is sufficient for
generating both ADL traces in residential settings and office routines in public buildings.

Bouchard et al. [30] proposed SIMACT, a simulator that allows third-party com-
ponents to connect to the simulator’s database to receive and store real-time sensor
readings. The simulator includes a set of pre-recorded scenarios (agent traces) to ensure
data consistency. Users can also define their own scenarios using an XML file. However,
SIMACT does not provide a multi-agent environment.

Ho et al. [27] introduced Smart Environment Simulation (SESim), a simulator
designed to generate synthetic sensor datasets. The simulator underwent three validation
phases: the creation of a smart environment, analysis of the generated data, and training
of an activity recognition algorithm using a multi-layer neural network. The algorithm
achieved an average recognition accuracy of 83.08% and Fl-score of 66.17%. However,
the evaluation was conducted solely on synthetic data generated by the simulator.

Lee et al. [28] introduced Persim-3D, a context-driven simulator implemented
in Unity 3D. The simulator represents agent activities as sequences of actions and
incorporates contexts that determine the conditions under which specific activities can
be performed. To assess the external validity of synthetic datasets, the authors compared
the data generated by the simulator with real-world data collected from the Gator Tech
Smart House (GTSH) [? ] and reported an 81% similarity. However, the authors did
not evaluate the performance of HAR algorithms using this simulator. Additionally, the
current version of the simulator only supports simulation of a single user activity.



Version January 28, 2024 submitted to Sensors 7 of 25

More recently, hybrid approaches have emerged, combining both model-based and
interactive approaches in a single simulator [26,29,32,48]. These approaches offer the
advantages of both methods.

Alshammari et al. [26] proposed OpenSHS, a simulator for ADL dataset generation.
Designers can use Blender 3D to create the space and deploy devices, and users can
control an agent with a first-person view to generate agent traces. The simulator records
sensor readings and states based on user interactions. It also supports script-based
actions in the environment. However, the project does not appear to be actively updated
or used.

Francillette et al. [32] developed a simulation tool capable of modeling the behavior
of individuals with Mild Cognitive Impairment (MCI) or Alzheimer’s Disease (AD).
The simulator allows manual control or modeling of an agent based on a behavior tree
model with error probabilities for each action. The authors demonstrated that their
simulator accurately emulates individuals with MCI or AD when actions have different
error probabilities.

Synnott et al. [29] introduced IE Sim, a simulator capable of generating datasets
associated with normal and hazardous scenarios. Users can interact with the simu-
lator through a virtual agent to perform activities. The simulator provides an object
toolbox with a wide range of indoor objects and sensors, allowing users to create new
objects as well. IE Sim collects sensor readings throughout the simulation. The authors
demonstrated that the simulator’s data can be used to detect hazardous activities and
overlapping activities. IE Sim combines interactive and agent modeling approaches.

Puig et al. [48,49] proposed the VirtualHome simulator, a multi-agent platform
for simulating activities in a home. Humanoid avatars represent the agents, which
can interact with the environment using high-level instructions. Users can also control
agents in a first-person view to interact with the environment. This simulator supports
video playback of human activities and enables agent training for complex tasks. It
includes a knowledge base that provides instructions for a wide range of activities.

The VirtualHome simulator aligns with our requirements for recognizing activities
in a house. Although some common human actions are not yet implemented, such as
hovering or eating, the extensible programming of the simulator allows for modifications.
Furthermore, the simulator facilitates the reproduction of human activity scenarios,
retrieval of sensor states, and replication of a real smart apartment for a digital twin. It is
an ongoing project with an active community.

3. Virtual Smart Home: The Simulator

We present Virtual Smart Home, a simulator designed for modeling activities of
daily living in smart homes by adapting the VirtualHome simulator [48] to log sensor
activations in a smart home environment. To assess its realism, we compare the simulated
activities with a multi-user dataset recorded in a real-life living lab.

3.1. Design of Virtual Smart Home

After reviewing the available simulators discussed in Section 2.3, we have selected
VirtualHome [48] as the foundation for our smart home simulator. Originally developed
for computer vision algorithms, VirtualHome is a multi-agent platform designed to
simulate activities in a house or apartment. It utilizes humanoid avatars that can interact
with their environment and perform activities based on high-level instructions. The
simulator incorporates a knowledge base that enables the creation of videos depicting
human activities, as well as training agents to perform complex tasks. Additionally, it
provides furnished flats for simulation purposes (see Figure 1).

VirtualHome is developed on the Unity3D game engine, which offers robust kine-
matic, physics, and navigation models. Moreover, users can take advantage of the vast
collection of 3D models accessible through Unity’s Assets store, providing access to a
diverse range of humanoid models.
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Figure 1. Virtual-Home apartment scenes

Moreover, VirtualHome offers a straightforward process for adding new flats by
utilizing the provided Unity project [49]. Each environment in VirtualHome represents
an interior flat with multiple rooms and interactive objects. The configuration of each
flat scene is stored in a .json file, which contains nodes representing each object and
their relationships with other objects (specified as “edge labels”). For instance, the label
“between” can be used to describe the relationship between rooms connected by a door.
By modifying these description files, users can easily add, modify, or remove objects,
enabling the creation of diverse scenes for generating videos or training agents.

Another notable feature of VirtualHome is its capability to create custom virtual
databases within specific environments, with a supportive community that contributes
new features. In a study conducted by Liao et al. [50], VirtualHome was utilized to
generate a novel dataset. The researchers expanded the original VirtualHome database
by incorporating additional actions for the agents and introducing programs. These
programs consist of predefined sequences of instructions that can be assigned to agents,
enabling them to perform activities within their simulated environment.

In VirtualHome, an avatar’s activity is represented by a sequence of actions, such
as “<char0> [PutBack] <glass> (1) <table>", as described in [51]. This flexible framework
facilitates the training of agents to engage in various everyday activities.

The authors successfully collected a new dataset [50] based on VirtualHome [35],
encompassing 3,000 daily activities. Furthermore, they expanded the database by in-
corporating over 30,000 programs, offering a wide range of actions and possibilities.
Additionally, the researchers graphed each environment, which consisted of an average
of 300 objects and 4,000 spatial relationships.

Using VirtualHome, users can create scenarios where 3D avatars perform daily
activities, with the ability to capture the simulated actions through a virtual camera.
Moreover, the simulator enables the replication of flats, facilitating the creation of digital
twins of apartments. However, it is important to note that VirtualHome does not support
the acquisition of data through home automation sensors.

In order to enhance the ability to reproduce scenarios and collect data from ambient
sensors, we have implemented several new features in our simulator:

1.  Interactive Objects: While VirtualHome already offers a variety of objects for
inclusion in apartments, many are passive and non-interactive. To address this
limitation, we added the functionality to interact with some new objects. Agents
can now open trash cans, drawers of column cabinets, and push on toilet faucets.
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Objects with doors are implemented by splitting them into two parts—one static
and one capable of rotation around an axis to simulate interaction. Fluid objects like
toilet faucets are simulated by placing the origin point of the fluid at its supposed
source.

2. Simulation Time Acceleration: To generate a large volume of data quickly, we
implemented the ability to accelerate simulation times. This feature utilizes the
Time.timeScale function of the Unity game engine. However, the acceleration can-
not surpass the rendering time of the Unity game engine, resulting in a maximum
fourfold increase in simulation speed.

3. Real-Life Apartment Replication and Room Creation: To replicate a real-life apart-
ment, we propose a methodology that involves creating a 2D map of the flat using
tools like Sweet Home 3D [52]. This map is then reproduced in VirtualHome,
respecting the hierarchical object structure imposed by the simulator. Finally, the
interactive objects are placed in a manner similar to their real-world counterparts.
We demonstrated the effectiveness of this method by replicating a real-life intel-
ligent apartment based on our room dimension measurements. Additionally, we
have introduced the ability to create new rooms, such as outdoor and entrance
areas.

4.  IoT Sensors: While VirtualHome previously focused on recording activities using
videos, we have implemented IoT sensors to enhance the simulation. The following
sensors have been incorporated: (1) opening/closing sensors, (2) pressure sensors,
(3) lights, (4) power consumption, and (5) zone occupancy sensors. Except for the
zone occupancy sensors, all other sensors are simulated using the environment
graph of the scene. This graph lists all objects in the scene with their corresponding
states (e.g., closed /open, on/off). The zone occupancy sensor takes the form of a
sensitive floor, implemented using a raycast. It originates from the center of the
avatar and is directed downwards. The floor of the flat is divided into rooms, and
the intersection with the floor identifies the room in which the avatar is located.

5. Simulation Interface: We have developed an interface that allows users to launch
simulations by specifying the apartment, ambient sensors, scenarios, date, and
time. The interface facilitates the scripting of each labeled activity for reproduction
in the simulation. It provides three main functions: (1) creation of an experiment
configuration file, where the simulation flat and desired sensor data can be chosen;
(2) creation of a scenario configuration file, offering choices such as experiment date,
simulation acceleration, and various activities with their durations; (3) association
of an experiment configuration file with a scenario configuration file and the
subsequent launch of the simulation. This functionality enables the storage of
synthetic sensor logs in a database file and provides a comprehensive record of
the conducted experiment, including the experiment configuration file and the
scenario configuration file.

3.2. Assessing the Simulator through Dataset Creation

Our objective is to demonstrate the Virtual Smart Home simulator’s ability to
generate realistic data that can be utilized for training Human Activity Recognition
(HAR) algorithms. To achieve this, we undertook the following steps:

Firstly, we recorded Activities of Daily Living (ADLs) performed by volunteers in
our physical smart apartment. This allowed us to collect real-world data that served as
the ground truth for our assessment.

Next, we replicated our smart apartment within the Virtual Smart Home simulator,
creating a digital twin of the environment. This virtual representation ensured an
accurate simulation of the apartment’s layout and characteristics.

Subsequently, we programmed the avatar within the simulator to replicate the
ADLs performed by the volunteers. This process involved instructing the virtual agent
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to mimic the actions and interactions observed during the recording phase. As a result,
we generated synthetic sensor logs that mirrored the behaviors of the real-world ADLs.

Finally, we conducted an evaluation to compare the replicated data generated by
the simulator with the original real-world data. This assessment aimed to measure the
similarity and fidelity of the simulated data, providing insights into the effectiveness of
the Virtual Smart Home simulator.

3.3. Assessing the Simulator through Dataset Creation

Our objective is to demonstrate the Virtual Smart Home simulator’s ability to
generate realistic data that can be utilized for training HAR algorithms. To achieve this,
we undertook the following steps:

Firstly, we recorded ADLs performed by volunteers in our physical smart apartment.
This allowed us to collect real-world data that served as the ground truth for our
assessment.

Next, we replicated our smart apartment within the Virtual Smart Home simulator,
creating a digital twin of the environment. This virtual representation ensured an
accurate simulation of the apartment’s layout and characteristics.

Subsequently, we programmed the avatar within the simulator to replicate the
ADLs performed by the volunteers. This process involved instructing the virtual agent
to mimic the actions and interactions observed during the recording phase. As a result,
we generated synthetic sensor logs that mirrored the behaviors of the real-world ADLs.

Finally, we conducted an evaluation to compare the replicated data generated by
the simulator with the original real-world data. This assessment aimed to measure the
similarity and fidelity of the simulated data, providing insights into the effectiveness of
the Virtual Smart Home simulator.

3.3.1. The Smart Apartment

To capture ground truth sensor data, our dataset was created in our smart apartment
called Experiment’'Haal [53]. This dedicated studio serves as a testbed for experimental
assistive devices and enables user testing in a simulated domestic environment. It allows
us to validate technological solutions proposed by end-users within their daily life
context before deployment on a larger scale.

Our smart apartment is equipped with various smart sensors and a ceiling-mounted
fisheye camera. The camera records and observes the ADLs performed by the volunteers,
providing visual data for analysis. The smart sensor array includes:

1. A sensitive floor that tracks the movement or presence of a person in different
areas.

Motion sensors placed strategically to detect motion in specific locations.
Magnetic open/close sensors to monitor the status of doors or windows.

Smart lights that can be controlled remotely or manually adjusted by switches.
Smart plugs to monitor the status and power consumption of various devices such
as the stove, oven, kettle, outlets, and television.

6.  Pressure sensors installed on the bed and sofa to detect occupancy.

Gl e

Figure 2 provides a detailed overview of the smart apartment layout and the
positions of the sensors.

It is important to note that the sensors in the apartment come from different brands,
resulting in heterogeneity and potential communication challenges. To address this, we
implemented the xAAL solution [54]. This solution serves as a universal bus and acts
as an IP-based smart home hub protocol, enabling us to collect data and events from
devices in a unified manner.

To facilitate data collection and analysis, we divided the open space of the apartment
into six distinct rooms, as shown in Figure 3. The SensFloor [55], functioning as a
presence detector, was utilized to monitor each room. This arrangement allowed us
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to capture not only the presence of a person in a specific room but also the transitions
between rooms.
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Figure 3. Room localization within the smart apartment

3.3.2. The Ground Truth Dataset

To generate the ground truth dataset, we asked volunteers to perform three different
scenarios:

1. Morning scenario: This scenario involved getting out of bed and going through a
typical morning routine before heading to work.

2. Lunchtime scenario: In this scenario, participants returned home from work, pre-
pared and ate lunch, and then went back to work.

3. Evening scenario: This scenario focused on participants returning home for the
evening until it was time to go to bed.

For these scenarios, we defined a list of 17 possible activity labels, including “Bathe”,
“Cook breakfast”, “Cook dinner”, “Cook lunch”, “Dress”, “Eat breakfast”, “Eat dinner”,
“Eat lunch”, “Enter home”, “Go to toilet”, “Leave home”, “Read”, “Sleep”, “Sleep in
Bed”, “Wash dishes”, and “Watch TV”. These labels were inspired by existing literature

datasets such as CASAS [20] and the ADL definitions provided by Katz et al. [56].
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We recorded a total of 511 activity sequences with 8 different volunteers across the
three scenarios: 158 in the morning, 154 at noon, and 199 in the evening. Tables 3, 4, and
5 show the number of activities performed by the volunteers in each scenario. Table 6
provides a global summary of the generated dataset.

Table 3. Summary of all recorded data from morning scenarios

Activity Subject1 Subject2 Subject3 Subject5 Subject6 Subject7 Subject8 Subject9 Total/ Activity
Bathe 5 3 3 3 1 1 0 0 16
Cook 5 4 4 7 2 2 0 2 26
Dress 6 4 4 1 1 1 0 2 19
Eat 5 4 3 3 1 2 0 1 19
Enter Home 0 0 0 1 0 0 0 0 1
Go To Toilets 5 4 3 1 1 1 0 1 16
Leave Home 5 4 2 2 1 2 0 1 17
Read 0 0 2 2 0 0 0 0 4
Sleep 5 4 4 0 1 2 0 1 17
Sleep in Bed 0 0 0 2 0 0 0 0 2
Wash Dishes 5 4 3 0 1 2 0 1 16
Watch TV 0 0 0 3 1 0 0 1 5
Total / Subject 41 31 28 25 10 13 0 10 158
Table 4. Summary of all recorded data from mid-day scenarios

Activity Subject1 Subject2 Subject3 Subject5 Subject6 Subject7 Subject8 Subject9 Total/ Activity
Bathe 5 0 1 3 0 0 0 0 9
Cook 7 6 1 3 1 4 2 4 28
Dress 7 2 0 1 0 0 0 1 11
Eat 5 2 1 3 0 2 1 2 16
Enter Home 5 2 1 2 1 2 1 2 16
Go To Toilets 8 4 1 4 1 0 0 2 20
Leave Home 5 1 1 2 1 2 1 2 15
Read 1 3 1 2 0 0 0 0 7
Sleep 2 0 0 1 0 0 0 0 3
Sleep in Bed 4 0 0 0 0 0 0 0 4
Wash Dishes 6 2 1 2 1 2 1 2 17
Watch TV 0 2 0 0 1 4 1 0 8
Total / Subject 55 24 8 23 6 16 7 15 | 154
Table 5. Summary of all recorded data from the evening scenarios

Activity Subject1 Subject2 Subject3 Subject5 Subject6 Subject7 Subject8 Subject9 Total/ Activity
Bathe 6 2 3 5 0 1 0 2 19
Cook 6 5 2 5 0 3 0 3 24
Dress 8 2 1 4 1 2 1 0 19
Eat 4 2 2 4 0 1 0 2 15
Enter Home 5 2 2 3 1 2 1 2 18
Go To Toilets 10 3 1 4 0 2 0 2 22
Leave Home 0 0 0 0 0 0 0 0 0
Read 5 1 0 0 0 1 0 0 7
Sleep 4 2 1 3 1 2 1 2 16
Sleep in Bed 5 2 3 3 1 2 1 2 19
Wash Dishes 6 2 2 2 0 1 0 2 15
Watch TV 4 3 2 7 1 3 1 4 25
Total / Subject 63 26 19 40 5 20 5 21 199

3.3.3. The Synthetic Dataset

To replicate our real-life database in the Virtual Smart Home simulator, we first
recreated our living lab within the simulator. The objective was to create a digital twin
of the physical space, ensuring that each object and room was accurately represented
with corresponding dimensions. A visual comparison between the real living lab and its
virtual representation is shown in Figure 4.

Next, we utilized our implementation of IoT sensors in the Virtual Smart Home
simulator to incorporate the connected sensors present in the living lab. We equipped the
different objects in the virtual environment with these sensors. Specifically, we outfitted
the floors representing the various rooms with person detection sensors to simulate our
sensitive floor (SensFloor) as depicted in Figure 4.
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Table 6. Summary of all recorded data from all scenarios

Activity Subject1 Subject2 Subject3 Subject5 Subject6 Subject7 Subject8 Subject9 Total/ Activity
Bathe 16 5 7 11 1 2 0 2 44
Cook 18 15 7 15 3 9 2 9 78
Dress 21 8 5 6 2 3 1 3 49
Eat 14 8 6 10 1 5 1 5 50
Enter Home 10 4 3 6 2 4 2 4 35
Go To Toilets 23 1 5 9 2 3 0 5 58
Leave Home 10 5 3 4 2 4 1 3 32
Read 6 4 3 4 0 1 0 0 18
Sleep 11 6 5 4 2 4 1 3 36
Sleep in Bed 9 2 3 5 1 2 1 2 25
Wash Dishes 17 8 6 4 2 5 1 5 48
Watch TV 4 5 2 10 3 7 2 5 38
Total / Subject 159 81 55 88 21 49 12 46 | 511

Figure 4. (a) View of the living lab from a fisheye camera, (b) Representation in the Virtual Home
Simulator

The synthetic dataset was created by replicating the recorded scenarios from the
living lab within the simulator. Several post-processing steps were performed, including
renaming the sensors and removing certain sensors (e.g., CO; sensors, WiFi, radio
level sensors, noise sensor) from the real sequences that could not be implemented
in VirtualHome or were not relevant for our project. We also binarized the activation
values of devices such as the TV or the oven. While our real-life sensors provided power
consumption values, we transformed them into ON or OFF states for simplicity in the
virtual dataset.

4. Comparison Between Synthetic Data and Real Data

To assess the similarity between the synthetic data generated by the Virtual Smart
Home simulator and the log sequences obtained from real-life recordings, we employed
two comparison methods.

Firstly, we compared the frequency of sensor activations in the synthetic data with
that of the real data. This initial analysis provided insights into the number of sensors
triggered during activities and allowed for a comparison between the two datasets.

Secondly, we utilized cross-correlation [57] to measure the similarity between the
log sequences from the real-life and synthetic data. Cross-correlation is a statistical
measure that calculates the correlation between two sequences at different time lags.

To validate the synthetic log sequences, we implemented an activity recognition al-
gorithm proposed by [5]. This algorithm consists of an Embedding layer, a Bi-Directional
LSTM (Long Short-Term Memory) layer [59], and a Softmax layer for classification. The
Embedding layer transforms integer values into vectors, while the Bi-Directional LSTM
is a recurrent network layer that processes time steps in both the forward and backward
directions. This type of network is commonly used in deep learning for handling tempo-
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ral time series or sequential data. We used the same parameters and training approach
as described in the original paper.
We trained the algorithm using four different tests:

1.  Training and validating on synthetic data using three subjects with leave-one-out-
subject validation.

2. Training and validating on real data using three subjects with leave-one-out-subject
validation.

3. Training the algorithm on synthetic data from one subject and validating it on the
real data of the same subject.

4. Training the algorithm on synthetic data from all subjects and validating it on the
real data for each subject.

We will present our results in three sections to validate our digital twin approach
and draw conclusions regarding activity recognition using synthetic data.

Firstly, in Section 4.2, we will compare the triggered sensor events between the
synthetic and real logs. Then, in Section 4.3, we will present the results obtained using
cross-correlation to determine the similarity between the sequences of real and synthetic
logs. Finally, in Section 4.4, we will showcase the results obtained with the recognition
algorithm on the data collected from simulation and reality.

4.1. Comparison of Triggered Sensors in Real and Synthetic Logs for Similar Scenarios

To gain an initial understanding of the synthetic data generated, we compared the
frequency of sensor activations in the synthetic data with that of the real data.

Figure 5 illustrates the comparison of the number of triggered sensors in the real
dataset (in blue) and the synthetic dataset (in red) across 15 scenarios. Most scenarios
showed a similar count of triggered sensors in both datasets. However, some scenarios
(1,4, 5,9, and 13) exhibited an excess of triggered sensors in the synthetic data. Upon
examining Table 7, we observed that these scenarios predominantly involved presence
sensors, which detect the presence of the avatar in a specific room. The difference in
sensor activations can be attributed to the fact that the real-life sensor did not always
detect the volunteer, and the path chosen by the avatar in the simulator did not always
match the movement of the volunteer during the recording experiment.

Number of sensors detected in scenarios experimented in reality and in simulation
20 1
18 4
16 1
14 4
12 4
10 1

1 2 3 4 5 6 7 8 9 1011 12 13 14 15

I sensors detected in reality
I sensors detected in virtual-home

Figure 5. Comparison graph of sensors triggered in real and synthetic logs for similar scenarios
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Table 7. Comparison table of sensors triggered in real and synthetic logs

Scenario Number Real Synthetic Excess Sensors Detected Index in Figure 5
s3_1_bis 13 14 floor_bedroom 1
s3_2_bis 15 15 2
s3_3_bis 18 18 3
s3_4_bis 10 11 floor_dining_room 4
s7_1 12 13 floor_bathroom 5
s7_2 17 17 6
s7_4 18 18 7
s7_5 15 15 8
s7_6 13 15 floor_bathroom, floor_bedroom 9
s9_1 16 16 10
s9_2 19 19 11
s9_3 18 18 12
s9_4 14 15 floor_bathroom 13
s9_5 14 14 14
s9_6 20 20 15

In conclusion, the comparison of triggered sensors between the real and synthetic
logs for similar scenarios showed a generally close alignment. However, discrepan-
cies were observed in scenarios, in particular for the presence sensors, which can be
attributed to variations in detection and movement between the real-life recording and
the simulation.

4.2. Comparison of Triggered Sensors in Real and Synthetic Logs for Similar Scenarios

In this section, we compared the frequency of sensor activations in the synthetic
data with that of the real data to assess the similarity between the two datasets. The
comparison focused on the number of triggered sensors in similar scenarios.

To perform this analysis, we examined the number of sensors activated in both the
real and synthetic datasets across 15 scenarios. Figure 5 illustrates the comparison, with
the blue bars representing the real dataset and the red bars representing the synthetic
dataset. In most scenarios, the count of triggered sensors was similar between the two
datasets. However, some scenarios (1, 4, 5, 9, and 13) exhibited an excess of triggered
sensors in the synthetic data.

Upon further investigation (see Table 7), we discovered that these scenarios primar-
ily involved presence sensors that detect the presence of the avatar in specific rooms.
The discrepancy in sensor activations can be attributed to variations in detection and
movement between the real-life recording and the simulation. In some cases, the real-life
sensor did not detect the volunteer, while the simulated avatar followed a different path,
resulting in additional sensor activations in the synthetic data.

Overall, the comparison of triggered sensors between the real and synthetic logs for
similar scenarios demonstrated a generally close alignment. However, differences arose
in scenarios involving presence sensors due to variations in detection and movement.
This analysis provides valuable insights into the similarities and discrepancies between
the real and synthetic datasets.
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Table 8. Cross correlation similarity

4.3. Comparison with Cross-Correlation

In this section, we utilized cross-correlation to compare the activation and order
of sensors in both real and synthetic log sequences. The cross-correlation values were
calculated for all sensors at each time point to evaluate the similarity between the two
datasets.

[e9)
(fxg)ln) = 3. flm)g(m+n) ©)
m=—oo

The cross-correlation formulas 1 for discrete functions was used, and the cross-
correlation values were calculated for all sensors and times in the sequences. To ensure a
fair comparison with the longer real log sequences, we expanded the cross-correlation
tables for synthetic sensors by duplicating the last line since the sensor values do not
change.

To determine the similarity between the real and synthetic log sequences, we
multiplied the value of each sensor in the real sequence by the corresponding synthetic
sensor value. If the values matched (e.g., both ON or both OFF), a score of 1 was assigned;
otherwise, a score of -1 was assigned. This calculation was performed for each sensor at
each time point, resulting in the final cross-correlation table. The score was computed as
the sum of all cross-correlation values for the sensors at each time.

The percentage likelihood between the two log sequences was calculated using the
following formula:

Percentage = Maximum Score x 100
5= (Number of Sensors in Reality x Number of Events in Reality)

Table 8 presents the results obtained for the 15 processed scenarios, including the
similarity percentage and the average similarity across scenarios.

Subject S9 S7 S3
Scenario Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Similarity (%) 75.73% 97.40% 75.42% 75.30% 69.61% 74.42% | 81.24% 93.18% 85.22% 84.73% 88.28% | 79.93% 77.53% 54.73% 82.78%
Average Similarity (%) 77.98% 86.53% 73.74%

The obtained percentages were generally above 70%, except for one case that
yielded 54.73%. Upon closer examination, we identified that the SensFloor sensor could
be activated and deactivated multiple times in the same room, leading to variations in
the log sequences. An example of such variations in the real log sequence is presented in
Table 9, which corresponds to the scenario with the lowest similarity percentage.

In conclusion, the cross-correlation analysis revealed that the synthetic log se-
quences exhibited a high level of similarity to the real sequences, with similarity per-
centages exceeding 70% and reaching up to 86.53%. This indicates that the digital twin
approach allowed us to generate synthetic data that closely resembled the real-world
data. Although variations were observed in some scenarios due to the presence sensors,
the overall comparison demonstrated a remarkable alignment between the two datasets.
These findings suggest that the synthetic data generated through the digital twin ap-
proach can be effectively utilized for various applications, including activity recognition
algorithms. In the following subsection 4.4, we will investigate whether this level of
similarity is sufficient to achieve comparable performance using an activity recognition
algorithm.
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2021-07-12 18:01:29.112556 | floor_livingroom OFF | watch_tv
2021-07-12 18:03:33.039082 | floor_livingroom ON | watch_tv
2021-07-12 18:03:34.014050 | floor_livingroom OFF | watch_tv
2021-07-12 18:04:18.782342 | floor_livingroom ON | watch_tv
2021-07-12 18:04:19.785484 | floor_livingroom OFF | watch_tv
2021-07-12 18:04:21.030509 | floor_livingroom ON | watch_tv
2021-07-12 18:04:22.030509 | floor_livingroom OFF | watch_tv
2021-07-12 18:04:25.854238 | floor_livingroom ON | watch_tv
2021-07-12 18:04:29:084238 | floor_livingroom OFF | watch_tv
2021-07-12 18:05:02.588711 | floor_livingroom ON | watch_tv
2021-07-12 18:05:04.102735 | floor_livingroom OFF | watch_tv
2021-07-12 18:05:24.473798 | floor_livingroom ON | watch_tv
2021-07-12 18:05:26.010093 | floor_livingroom OFF | watch_tv
2021-07-12 18:06:09.667039 | floor_livingroom ON | watch_tv
2021-07-12 18:06:10.909138 | floor_livingroom OFF | watch_tv
2021-07-12 18:06:30.451480 | pressure_armchair | OFF | watch_tv
2021-07-1218:06:34.380592 | floor_livingroom ON | watch_tv
2021-07-12 18:06:45.037284 | floor_livingroom OFF | watch_tv

Table 9. Activation/deactivation of the SensFloor in the real log sequence : s7_activity_6

4.4. Activity recognition

In our activity recognition tests, we did not consider the time of day. This limitation
arose because we were unable to directly manage time within the VirtualHome envi-
ronment. Instead, we relied on post-processing techniques to estimate action durations,
which may not accurately represent real-world timing. Consequently, distinguishing
between different meal times (morning, noon, or evening) during eating and cooking
activities becomes challenging for an algorithm.

To address this challenge, we opted to group the specific “Eat ...” labels together
under a general label, “Eat”. This grouping included activities such as (1) “Eat breakfast”,
(2) “Eat lunch”, and (3) “Eat dinner”. Similarly, we combined the various cooking
activities into a single label, “Cook”, encompassing (1) “Cook breakfast”, (2) “Cook
lunch”, and (3) “Cook dinner”.

We conducted four different tests using the activity recognition algorithm proposed
by [5], as described previously at the beginning of this section.

4.4.1. Experiments 1 and 2: Leave-One-Subject-Out Cross Validations

The objective of this step is to assess the performance of the activity recognition
algorithm on both real and synthetic data. To achieve this, we employed the Leave-
One-Subject-Out cross-validation method, which is a variation of Leave-One-Out cross-
validation [60]. This method is commonly used for datasets with limited data or when
the data are associated with distinct entities.

In this experiment, we conducted two cross-validations: one using only synthetic
data and the other using only real data. With three subjects in our dataset, the cross-
validation involved using one subject for testing and the remaining two subjects for
training. We repeated this process by rotating the subject used for testing, enabling
validation on each subject’s data. Finally, we compared the results obtained from the
synthetic and real Leave-One-Subject-Out cross-validations.

The results of the two cross-validations are presented in Tables 10 and 11. These
results demonstrate that the algorithm can be trained with both real and synthetic data,
yielding comparable outcomes. Notably, there is a high degree of similarity in the
results for Subject “9”. However, for the other two subjects, we observe more differences
between the results of synthetic and real data. Specifically, the performance, as measured
by Fl-score and Balanced Accuracy, is better for Subject “7” and “3” with synthetic data.
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Table 10. Experiment 1: Leave-One-Subject-Out cross-validations for real data

Subject 9 Subject 7 Subject 3
Precision  Recall ~Fl-score Support Precision Recall Fl-score Support Precision Recall Fl-score Support

Bathe 40.00%  100.00%  57.14% 2 66.67%  100.00%  80.00% 2 100.00%  75.00%  85.71% 4
Cook 50.00% 30.00%  37.50% 10 25.00% 16.67%  20.00% 6 50.00%  100.00%  66.67% 4
Dress 100.00%  100.00%  100.00% 3 50.00%  33.33%  40.00% 3 66.67%  100.00%  80.00% 2
Eat 30.00% 50.00%  37.50% 6  12.50% 25.00%  16.67% 4 100.00%  33.33%  50.00% 3
Enter Home 100.00%  100.00%  100.00% 4 75.00%  100.00% 85.71% 3 60.00% 100.00%  75.00% 3
Go To Toilets 100.00%  20.00%  33.33% 5 100.00%  33.33%  50.00% 3 50.00%  50.00%  50.00% 2
Leave Home 100.00%  100.00%  100.00% 4 60.00% 100.00%  75.00% 3 0.00% 0.00% 0.00% 2
Sleep 100.00%  100.00%  100.00% 3 0.00% 0.00% 0.00% 4 0.00% 0.00% 0.00% 2
Wash Dishes 83.33%  100.00%  90.91% 5 100.00%  50.00%  66.67% 4 100.00%  100.00%  100.00% 4
Watch TV 100.00%  100.00%  100.00% 7  83.33% 100.00%  90.91% 5 100.00% 100.00% 100.00% 2
Accuracy 71.43% 51.35% 71.43%

Balanced Accuracy ~ 80.00% 55.83% 65.83%

Macro Avg 80.33%  80.00%  75.64% 49 57.25%  55.83%  52.50% 37 62.67%  65.83%  60.74% 28
Weighted Avg 77.07%  71.43%  70.11% 49  5419%  51.35%  49.19% 37  68.33%  7143%  65.88% 28
Table 11. Experiment 2: Leave-One-Subject-Out cross-validations for synthetic data

Subject 9 Subject 7 Subject 3
Precision  Recall Fl-score Support Precision Recall Fl-score Support Precision Recall Fl-score Support

Bathe 100.00%  100.00%  100.00% 2 100.00%  50.00%  66.67% 2 100.00%  75.00%  85.71% 4
Cook 100.00%  20.00%  33.33% 10  75.00%  100.00%  85.71% 6  0.00% 0.00% 0.00% 4
Dress 100.00%  100.00%  100.00% 3 0.00% 0.00% 0.00% 3 100.00%  100.00%  100.00% 2
Eat 40.00%  100.00%  57.14% 6 57.14%  100.00% 72.73% 4 100.00%  100.00% 100.00% 3
Enter Home 100.00%  75.00%  85.71% 4 75.00%  100.00%  85.71% 3 100.00%  100.00%  100.00% 3
Go To Toilets 100.00%  60.00%  75.00% 5 66.67%  66.67%  66.67% 3 50.00%  50.00%  50.00% 2
Leave Home 75.00%  75.00%  75.00% 4 100.00%  66.67%  80.00% 3 100.00%  100.00% 100.00% 2
Sleep 100.00%  100.00%  100.00% 3 100.00%  25.00%  40.00% 4 100.00% 100.00% 100.00% 2
Wash Dishes 71.43%  100.00%  83.33% 5 100.00%  75.00%  85.71% 4 2000%  25.00% @ 22.22% 4
Watch TV 85.71% 85.71%  85.71% 7 6250%  100.00%  76.92% 5 100.00%  100.00%  100.00% 2
Accuracy 73.47% 72.97% 67.86%
Balanced Accuracy  81.57% 68.33% 75.00%
Macro Avg 87.21%  81.57%  79.52% 49  73.63%  68.33%  66.01% 37 77.00%  75.00%  75.79% 28
Weighted Avg 85.66% 7347%  71.65% 49  7341% 7297%  68.19% 37 70.71% 67.86%  68.99% 28

641 Examining the confusion matrices in Figure 6, we observe more activity confusions

ez When using real data. This finding suggests that real data pose greater complexity for
a3 the algorithm, likely due to sensor recording errors in the real apartment.

644 In general, the confusion matrices reveal certain patterns. For example, activities
ess such as “Enter Home” and “Leave Home” are often confused, which is logical since they
ses trigger similar types of sensors (entrance floor, principal door, etc.). Similarly, “Bathe”
ez and “Go To Toilet” activities show confusion, likely because one may wash their hands
ess after using the toilet, and in our apartment, the toilet is located in the same room as
seo the bathroom. “Reading” and “Watching TV” activities can also be easily confused as
eso they occur in the same room and trigger similar types of sensors. Additionally, “Wash
es1  Dishes” and “Cook” activities, being in the same room, are occasionally confused by the
es2 algorithm.

653 Comparing the confusion matrices for real and synthetic data, we observe that the
esa aforementioned confusions occur in both cases. For instance, the activity “Read” is not
ess  correctly recognized in both synthetic and real data for Subject “3”, although the scores
ess are slightly higher for real data. This difference can be attributed to the richness of real
es7 data, which exhibits more sensor activations in the sequence. Moreover, the avatar’s
ese  trajectory in simulation can introduce sensor activations that are not correlated with the
eso current activity. In contrast, during the real recordings, subjects pay attention to room
eso transitions, while the avatar does not, resulting in sensor activations from other rooms
es1 that disrupt activity sequences.
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Figure 6. Experiment 1 an 2: Leave-One-Subject-Out cross-validations confusion matrices

662 In conclusion, despite the logical confusions made by the algorithm, the recognition
ess results obtained are quite similar for real and synthetic data. In the next subsection 4.4.2,
ess we will investigate the extent to which synthetic data can be effectively used for activity
ees Tecognition in our digital twin.

ees 4.4.2. Experiment 3: One-to-One - Training on Synthetic Data and Testing on Real Data

Training Test

o e

[ERRp U A R |

pigleglegleglelefitonliglogloglegiegiefiflgliglegtogte
' a» I
! w 1
' —— |
: V\’ 1

- - [RRp |

Synthetic Data Real Data

Figure 7. Experiment 3: One to One
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In this experiment, we trained the model using synthetic data from a subject and
tested the trained algorithm with the real data of the same subject (see details in Figure
7). The objective was to determine whether an algorithm trained on synthetic data could
effectively recognize activities in real data.

Analyzing Table 12 and Confusion Matrices 8, we can initially observe that the
synthetic data generated for each subject enabled training and recognition of activity
sequences for the corresponding real datasets (one subject at a time). Subjects “9” and
“7” achieved good performance in terms of Accuracy, Balanced Accuracy, and F1-score.
Notably, subject “7” exhibited the best performance among the subjects. For these two
subjects, the synthetic data appeared realistic enough to achieve activity recognition
with an accuracy of over 70% for both subjects.

In contrast, subject “3” displayed the lowest performance. It seems that the synthetic
data generated for this subject were insufficient to enable accurate activity recognition.
The poor performance for this subject suggests that there are differences between the
synthetic and real data. A closer examination of the real data for subject “3” reveals
sequences that are interfered with by sensors triggering unrelated to the activity. For
example, the presence sensor on the floor is regularly triggered in the living room
while subject “3” is in the kitchen. This disturbance occurs due to a sensor malfunction,
detecting a second presence in the living room. Such malfunctions are not anticipated or
simulated in the synthetic data.

Additionally, we observed that the activity “Bathe” was not recognized for subject
“9”, whereas it was recognized with 100% accuracy for subject “7”. Subject “3” had four
activity classes out of ten that were not recognized. These results indicate that synthetic
data can be used to train an algorithm and recognize activities in real data. However,
relying solely on activity data from a single subject may not always be sufficient. Fur-
thermore, the performance can be degraded by sensor malfunctions in real conditions,
which can disrupt the activity recognition algorithm. Therefore, incorporating more data
and variability into the training dataset is necessary to address these challenges.

Table 12. Experiment 3: One to One - results of multiple metrics

S9 s7 S3
Precision  Recall Fl-score Support Precision Recall Fl-score Support Precision Recall Fl-score Support

Bathe 0.00% 0.00% 0.00% 2 100.00% 100.00%  100.00% 2 50.00% 100.00%  66.67% 4
Cook 90.00%  90.00%  90.00% 10 54.55% 100.00%  70.59% 6 75.00%  75.00%  75.00% 4
Dress 75.00% 100.00%  85.71% 3 100.00% 100.00%  100.00% 3 100.00%  50.00%  66.67% 2
Eat 50.00%  50.00%  50.00% 6 100.00%  75.00%  85.71% 4 0.00% 0.00% 0.00% 3
Enter Home 50.00%  75.00%  60.00% 4 100.00%  33.33%  50.00% 3 60.00% 100.00%  75.00% 3
Go To Toilets 66.67%  80.00%  72.73% 5 75.00% 100.00%  85.71% 3 0.00% 0.00% 0.00% 2
Leave Home 40.00%  50.00%  44.44% 4 60.00% 100.00%  75.00% 3 0.00% 0.00% 0.00% 2
Sleep 50.00%  33.33%  40.00% 3 100.00%  75.00%  85.71% 4 100.00%  50.00%  66.67% 2
Wash Dishes 100.00%  80.00%  88.89% 5 100.00%  25.00%  40.00% 4 44.44% 100.00%  61.54% 4
Watch TV 100.00%  85.71%  92.31% 7 100.00%  80.00%  88.89% 5 0.00% 0.00% 0.00% 2
Accuracy 71.43% 78.38% 57.14%

Balanced Accuracy 64.40% 78.83% 47.50%

Macro Avg 6217%  64.40%  62.41% 49 88.95%  78.83%  78.16% 37 4294%  4750%  41.15% 28
Weighted Avg 70.78%  71.43%  70.39% 49 87.36%  78.38%  76.91% 37 44.92%  57.14% = 46.59% 28
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Matrix confusion for subject 9 synthetic data to real data - one to one | Matrix confusion for subject 7 synthetic data to real data - one to one | Matix confusion for subject 3 synthetic data to real data - one to one |
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Figure 8. Experiment 3: One to One - confusion matrices
eos 4.4.3. Experiment 4: Many-to-One - Training on Synthetic Data and Testing on Real Data
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Figure 9. Experiment 4: Many to One
696 The objective of this experiment was to train the algorithm using all synthetic

eoz data and then test it on the real data of each subject independently (see Figure 9). The
es purpose was to evaluate whether increasing the amount of data provided by the synthetic
eeo data from different subjects would improve the algorithm’s capabilities in recognizing
700 daily activities. In the previous section, we observed that training an algorithm on
71 synthetic data and testing it in real conditions can be successful. However, the quantity
72 of training data was not very representative and still relatively close to the real data. The
703 performance could be enhanced by presenting the algorithm with examples of different
s lifestyles within the same living environment, allowing for better generalization.

708 Table 13 demonstrates that the algorithm achieved higher classification scores (close
76 t0 80%) for all subjects compared to the previous experiment. Subject “7” maintained
707 very similar performance to the previous experiment. However, subjects “9” and “3”
7s showed notable improvement, particularly subject “3”, which had previously exhibited
700 the worst results. Subject “3” experienced an increase in accuracy and balanced accuracy
7o from 57.14% and 47.50% to 78.57% and 81.67%, respectively.
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Table 13. Experiment 3: Many to One - results of multiple metrics
S9 S7 S3
Precision Recall Fl-score Support Precision Recall Fl-score Support Precision Recall Fl-score Support
Bathe 100.00%  100.00%  100.00% 2 100.00% 100.00%  100.00% 2 100.00%  75.00%  85.71% 4
Cook 100.00%  80.00%  88.89% 10 50.00% 100.00%  66.67% 6 100.00%  25.00%  40.00% 4
Dress 100.00%  100.00%  100.00% 3 100.00%  66.67%  80.00% 3 100.00% 100.00%  100.00% 2
Eat 50.00%  66.67%  57.14% 6  100.00%  50.00%  66.67% 4 100.00%  66.67%  80.00% 3
Enter Home 66.67%  50.00%  57.14% 4 100.00% 100.00%  100.00% 3 75.00% 100.00%  85.71% 3
Go To Toilets 100.00%  80.00%  88.89% 5 100.00% 100.00%  100.00% 3 66.67% 100.00%  80.00% 2
Leave Home 100.00%  75.00%  85.71% 4 100.00% 100.00%  100.00% 3 100.00%  50.00%  66.67% 2
Sleep 37.50% 100.00%  54.55% 3 66.67% 100.00%  80.00% 4 100.00% 100.00%  100.00% 2
Wash Dishes 100.00%  80.00%  88.89% 5 0.00% 0.00% 0.00% 4 57.14% 100.00%  72.73% 4
Watch TV 100.00%  85.71%  92.31% 7 100.00%  80.00%  88.89% 5 66.67% 100.00%  80.00% 2
Accuracy 79.59% 78.38% 78.57%
Balanced Accuracy 81.74% 79.67% 81.67%
Macro Avg 85.42%  81.74%  81.35% 49 81.67%  79.67%  78.22% 37 86.55%  81.67%  79.08% 28
Weighted Avg 87.33%  79.59%  81.67% 49 77.48%  78.38%  74.89% 37 86.44%  78.57%  76.58% 28
Matrix confusion for subject 9 synthetic data to real data - many to one Matrix confusion for subject 7 synthetic data to real data - many to one Matrix confusion for subject 3 synthetic data to real data - many to one
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Figure 10. Experiment 4: Many to One - confusion matrices

Furthermore, Table 13 and Figure 10 reveal that more activity classes were correctly
identified. The introduction of additional synthetic data from other subjects within the
same apartment led to improved classification performance. The contribution of data
from different subjects introduced variability in the execution of activities, enabling the
algorithm to better generalize and capture sensor behavior during activities. Having a
diverse range of examples is crucial for training a deep learning algorithm.

In conclusion, by utilizing more synthetic data, the algorithm demonstrated in-
creased performance in real conditions. The inclusion of behavioral variability from
different subjects facilitated better generalization. This generalization resulted in signifi-
cant improvements, particularly for subject “3”.

4.5. Summary

The experiments conducted in this section yielded valuable insights. The results
demonstrated that the simulator has the ability to generate synthetic data that closely
resemble real-world data. The activity recognition algorithm performed similarly on both
synthetic and real data, indicating that training the algorithm solely on synthetic data
can effectively recognize activities in real-world scenarios. Moreover, when the entire set
of generated synthetic data was utilized, the algorithm’s performance improved for each
subject. This improvement can be attributed to the increased variability and examples
provided by the additional synthetic data, allowing the algorithm to better generalize
and capture the behavior of sensors during different activities.
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731 5. Conclusion

732 The limitations of existing datasets, such as their limited coverage of activities,
=3 lifestyles, and house configurations, pose challenges for activity recognition algorithms.
734 These algorithms trained on specific datasets may not be applicable to different envi-
735 ronments due to the tailored nature of their training data. Collecting new datasets is a
76 costly and time-consuming process, requiring volunteers to live in the environment and
77 label activities for an extended period. This presents practical difficulties and a risk of
7s mislabeling.

739 To address the data scarcity challenge and bridge the gap between training data
720 and real-world use cases, we proposed the use of a digital twin concept. By enhancing
7a1  the VirtualHome simulation environment, we simulated an intelligent environment with
7= home automation sensors, replicating a real smart apartment. Working with volunteers,
73 we generated data in the actual smart apartment through various activity scenarios.
7as  Subsequently, we replicated the volunteers’ activities in the digital twin of the apartment
75 using an avatar. Through comprehensive analysis and metric evaluation, we observed
= the similarity between the time series generated by the simulator and those generated
77 by the volunteers.

748 The synthetic sensor logs allowed us to train a HAR algorithm, which we then
70 validated on the real data collected by the volunteers. Our experiments demonstrated
70 that the algorithm achieved robust activity recognition performance on the real data,
71 with an average F1 score of approximately 80%. It is important to note that these
72 experiments were conducted on a relatively small dataset, and further validation with
753 larger amounts of data is necessary. Additionally, future work should involve continuous
7ss data generation from residents living permanently in the target environment to further
zss  validate the algorithm’s performance.

756 Nevertheless, our findings indicate that utilizing a digital twin to generate synthetic
75z data resembling the target environment shows promise for training HAR algorithms.
zss In our future work, we plan to expand the experiment by generating more synthetic
70 data from additional volunteers’ activities. We also aim to extend the evaluation to a
760 larger number of houses to validate the generalizability of our approach. Furthermore,
71 we will explore the possibility of training the algorithm from scratch in a house without
72 reproducing the labeled activities of the final resident, solely utilizing the activity scripts
763 provided by our volunteers.

764 By leveraging the concept of digital twins and generating realistic synthetic data,
7es We can mitigate the challenges posed by limited datasets and enhance the applicability
7es  Oof HAR algorithms in real-world environments.
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