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Abstract— Foundation Models for Robotics (FMRs) promise
to bring large-scale, generalist intelligence to embodied systems,
yet they remain limited in their ability to integrate perception,
action, and reasoning in physically grounded environments. In
this paper, we argue that advancing FMRs requires drawing
inspiration from biological systems—specifically human cog-
nition, development, and sensorimotor learning. We outline
five key bio-inspired principles for future FMRs: (1) memory
architectures incorporating semantic, episodic, and procedural
structures; (2) grounded structured reasoning, as exemplified by
embodied chain-of-thought (E-CoT) processes; (3) integration
of multimodal sensorimotor feedback, including touch and
proprioception; (4) self-motivated learning through simulated
play and intrinsic exploration; and (5) neural efficiency through
sparse expert activation, functional specialization, and modular
reasoning. These elements enable generalization, composition-
ality, and robustness—traits long demonstrated by humans but
underrepresented in current robotic models. While this work
does not address reliability and safety in depth, we identify
them as essential future directions for developing trustworthy,
human-aligned FMRs.

I. INTRODUCTION

Foundation Models (FMs) [1] in Natural Language Pro-
cessing (NLP) and Computer Vision (CV) refer to large-
scale, pre-trained models that serve as a base for a wide
range of downstream tasks. These models leverage massive
datasets and self-supervised learning to develop general-
purpose representations, which can then be fine-tuned for
specific downstream applications.

In NLP, Large Language Models (LLMs), such as GPT
series, PaLM, and LLaMA, have revolutionized the field by
leveraging the transformer architecture [2], self-supervised
pre-training paradigms and web-scale data. These models,
often containing tens or hundreds of billions of parameters,
demonstrate remarkable zero-shot and few-shot generaliza-
tion capabilities across a diverse range of tasks [3], includ-
ing dialogue systems, step-by-step reasoning, mathematical
problem-solving, and code generation.

Although impressive, these foundation models lack sen-
sorimotor skills, preventing them from directly perceiving,
manipulating, or interacting with the physical world in
an embodied manner. Such a contrast has been named
Moravec’s paradox [4] which explains why FMs, which can
generate complex plans and solve abstract problems, struggle
with basic sensorimotor tasks that human beings perform
effortlessly. A toddler can walk, localize and recognize
objects, and grasp items with almost no conscious effort.
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A natural and important question is whether these
data-absorbent FMs can be extended to robotics and
endowed with sensorimotor skills to interact with the real
world. Such an extension could be a transformative leap in
embodied Al, integrating high-level semantic understanding
with low-level robotic control. Thanks to common sense
knowledge in absorbing web-scale data, such an advance-
ment could grant robots the ability to interpret and execute
tasks through multimodal instructions. The extended FMs
demonstrates human-like controllability via natural language
interaction, perceptual reasoning to identify objects within
the scene, and versatile, multi-task capability to execute a
range of manipulative actions using a unified model. It ex-
hibits strong generalization, adapting to diverse environments
and object configurations, and incorporates long-horizon
planning and skill composability, breaking down complex
instructions into discrete, sequential actions—such as grasp-
ing, pouring, and handing over an object. By bridging the
gap between visual understanding and embodied execution,
this approach enhances robots’ ability to act autonomously
and flexibly in dynamic, real-world settings.

As such, an accelerating rapid move in Al and robotics
is research on Foundation Models for Robotics (FMRs),
with increasingly intensive efforts to integrate sensorimotor
capabilities and multimodal learning to enhance robotic
autonomy and real-world generalization skills. The latest
FMRs, such as OpenVLA, m), and Octo, represent a
significant advancement in generalist robotic capabilities by
integrating vision-language-action (VLA) models with large-
scale real-world robotic data. OpenVLA[S5], a 7B param-
eter model, is trained on 970,000 real robot demonstra-
tions and outperforms larger models like RT-2-X (55B)
[6], while maintaining adaptability across multiple robotic
platforms. 7y, developed by Physical Intelligence, employs
a flow-matching architecture built on vision-language models
(VLMs) to enable smooth real-time 50Hz control across
various tasks, including laundry folding and grocery bag-
ging. Octo[7], a diffusion-based policy trained on 800,000
trajectories, provides flexible task execution by allowing
natural language or goal image inputs, demonstrating high
adaptability across nine robotic embodiments. These FMRs
leverage scalable architectures, diverse real-world datasets,
and hierarchical reasoning to push the boundaries of multi-
task, generalist robotic intelligence, marking a shift toward
more efficient, adaptable, and open-source robotic learning
frameworks.

Despite recent progress, current FMRs still suffer from
several limitations, including scarcity of robot data and
its diversity, reliance on monolithic architectures, ineffi-



cient computation. In contrast, biological systems achieve
remarkable adaptability with limited data, energy efficiency,
and seamless sensorimotor integration. In this paper, we
first discuss the limitations of current FMRs and explore
how bio-inspired principles—such as structured memory,
functional specialization, can enhance FMRs, making them
more resilient, efficient, and autonomous, capable of skill
acquisition and transfer.

II. LIMITATIONS OF CURRENT FMRS

FMRs are primarily built upon state-of-the-art Vision-
Language Models (VLMs), which require vast amounts of
robotic interaction data to learn representations that general-
ize across tasks [6]. However, unlike language models trained
on web-scale datasets, robotic foundation models suffer from
a severe data bottleneck, as acquiring diverse, high-quality
demonstrations for embodied agents is expensive and time-
consuming [8]. Furthermore, these models face high compu-
tational demands and brittle generalization, making their de-
ployment in dynamic, unstructured environments particularly
challenging. In addition, FMRs inherit critical shortcomings
from VLMs, including hallucination—generating incorrect
or unrealistic actions—and a lack of real-world grounding,
which can lead to imprecise control and failure in physically
interactive tasks [9].

III. ENDOWING FMRS WITH HUMAN LIKE MEMORIES

Human memory consists of several specialized subsystems
that collectively support perception, learning, and behavior
[10]. Short-term memory enables real-time reasoning and
decision-making by holding transient information, while
long-term memory stores accumulated knowledge and ex-
periences. Within long-term memory, semantic memory
encodes general knowledge (e.g., tool functions), episodic
memory captures temporally situated personal experiences,
and procedural memory supports motor skill learning
and automatic behaviors (e.g., grasping or walking). Meta-
memory governs self-awareness and regulation of memory
processes, guiding what to retain, update, or forget.

In contrast, current Foundation Models for Robotics
(FMRs) are largely built upon the Transformer architecture
[2], which has become the dominant backbone for multi-
modal foundation models due to its ability to model long-
range dependencies through the self-attention mechanism. By
processing the entire input sequence simultaneously, Trans-
formers can capture complex relationships between modali-
ties—such as vision, language, and proprioception—making
them highly effective for tasks requiring semantic under-
standing, cross-modal alignment, and flexible reasoning.
This parallelism also facilitates scalable pretraining on large
datasets, a key enabler of recent advances in vision-language-
action (VLA) models.

However, this powerful capacity comes with a trade-off:
Transformers exhibit a quadratic computational cost with
respect to input sequence length. This limitation makes them
less suitable for tasks requiring long-horizon reasoning, low-
latency control, or memory efficiency, all of which are crucial

in real-world robotic systems. Additionally, Transformers
lack an inherent mechanism for persistent memory or tem-
poral state tracking, which restricts their performance in
continuous sensorimotor tasks where maintaining a history
of interaction is critical.
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Fig. 1. Human-inspired memory architecture and its robotic analogs.

Researchers have become increasingly aware of the lim-
itations posed by standard Transformer architectures, par-
ticularly regarding their computational inefficiency, lack of
persistent memory, and inability to adapt over long horizons.
In response, the Titans model has been proposed as a foun-
dational framework that directly addresses these shortcom-
ings [11]. Titans introduces a modular memory-augmented
architecture that integrates components such as long-term
memory modules (LMMs), surprise-based learning, and data-
dependent memory updates to enable efficient, scalable, and
lifelong adaptation. Notably, Titans implements an adaptive
forgetting mechanism by prioritizing the storage of surprising
information and suppressing predictable or redundant inputs.
This approach avoids memory overload and supports robust
knowledge consolidation over time, offering a promising
path forward for building foundation models that are not
only data- and compute-efficient but also capable of real-
world generalization and embodied reasoning across tasks
and environments.

While the Titans model marks a significant step toward
integrating memory into foundation models, it remains a
partial implementation of the full spectrum of human mem-
ory systems. Titans primarily addresses long-term storage
and surprise-based updating, but omits crucial cognitive
functions such as procedural, semantic, episodic, and meta-
memory. These memory systems are not only biologically
validated but also highly relevant for robotic autonomy. For
instance, procedural memory, which in humans encodes
motor skills like walking or riding a bike, would allow
robots to store and reuse low-level control primitives such
as grasping or tool use. Semantic memory, responsible for
factual and conceptual knowledge, could empower robots
to link object affordances and scene semantics to language
commands—underpinning vision-language-action (VLA) ca-
pabilities and enabling semantic-level planning and general-
ization. Episodic memory, which allows humans to recall
context-rich experiences, would let robots reflect on past
events, improving task decomposition, debugging, and causal
reasoning. Finally, meta-memory—the ability to monitor
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Fig. 2. Mapping brain-inspired principles to FMR mechanisms: sparse
coding to Sparse MoE, functional specialization to procedural experts, and
routing to memory-informed dynamic gating.

and manage one’s memory—would enable self-evaluation,
adaptive forgetting, and confidence estimation, critical for
safe and trustworthy autonomous decision-making. By in-
corporating these richer memory mechanisms as illustrated
in Fig.1, future FMRs could become more adaptive, explain-
able, and capable of lifelong learning in dynamic, open-world
environments.

IV. BRINGING NEURAL EFFICIENCY TO FMRS

The human brain is a model of computational efficiency
and specialization, capable of real-time, adaptive intelligence
while operating on just 20 watts of power. This remarkable
capability arises from several key principles. First, the brain
relies on sparse coding—only a small subset of neurons ac-
tivate in response to any given stimulus—leading to energy-
efficient, noise-robust processing [12]. Second, it exhibits
functional specialization and modularity, with distinct
brain regions (e.g., visual cortex, motor cortex, hippocampus)
dedicated to different cognitive and sensorimotor tasks [13].
Importantly, gating and routing mechanisms—guided by
attention, task demands, and internal state—determine which
circuits are activated and how information flows, enabling
conditional computation.

By contrast, most current Foundation Models for
Robotics (FMRs) operate under monolithic architectures
where all parts of the model are involved in processing
every input. This leads to high computational overhead,
lack of task-specific specialization, and poor scalability in
energy- and time-constrained robotic systems. These models
often lack mechanisms for conditional routing of information
and do not adapt their computational pathways dynamically
based on the input or context. As a result, even though FMRs
have shown strong generalization in simulated or static tasks,
their deployment in real-world, adaptive robotic systems
remains constrained by latency, energy use, and brittleness.

Recognizing these limitations, researchers have proposed
Sparse Mixture of Experts (MoE) architectures as a
promising path forward. In Sparse MoE, the model consists
of many specialized subnetworks (experts), but only a small
number are activated per input, reducing compute while im-
proving specialization. This approach builds upon early ideas
of expert routing [14] and adaptive attention mechanisms
[15], and has been successfully scaled in models like GShard
[16] and Switch Transformers [17]. It is now gaining traction
in robotics and multi-modal learning.

To bring neural efficiency to FMRs, future architectures
must incorporate sparse expert activation, modular learning
pathways, and dynamic routing mechanisms inspired by bio-
logical cognition as illustrated in Fig.2. This includes lever-
aging MoE to enable scalable models with input-dependent
specialization, integrating attention-based or surprise-driven
gating, and adopting hierarchical, brain-like modularity that
supports reuse and adaptation across tasks, robots, and
environments. Such pathways not only promise drastically
improved efficiency, but also pave the way toward truly
autonomous, self-improving robotic intelligence.

However, to achieve even greater neural-like efficiency,
future architectures must go beyond current sparse MoE
implementations. This includes incorporating dynamic ex-
pert routing influenced by uncertainty, novelty, or reward
signals—mimicking top-down attention in the brain. Addi-
tionally, integrating hierarchical MoE layers that reflect
cortical structures could enable more abstract, compositional
representations. Models could also benefit from task-aware
or experience-aware gating, where expert selection evolves
based on memory and meta-cognition, similar to how humans
recruit different strategies based on familiarity or context.
These extensions would bring FMRs closer to the flexible,
efficient, and context-sensitive intelligence found in biolog-
ical systems. For instance, specific experts could be trained
to represent procedural memory—encoding reusable motor
skills or control primitives—allowing robots to activate the
appropriate skill module based on context. In parallel, seman-
tic memory could serve as a high-level guide for expert selec-
tion, using conceptual knowledge and affordance information
to steer routing decisions. Together, these memory-informed
mechanisms could foster more interpretable, adaptive, and
efficient robotic intelligence.

V. INTEGRATING SENSORIMOTOR FEEDBACK IN FMRS

Humans and animals navigate, learn, and act in the
world through the seamless integration of multiple sensory
modalities. Vision allows us to perceive our environment
at a distance and identify objects; hearing provides spatial
and social cues; touch conveys information about texture,
pressure, and temperature; and smell enables the detection
of chemical signals that signal danger or opportunity. These
sensory channels—each with its unique resolution, latency,
and bandwidth—work in concert to guide decision-making,
motor control, and learning. This sensorimotor integration is
foundational for coordinated movement, object manipulation,
exploration, and survival. By continuously fusing inputs
from vision, hearing, proprioception, and tactile sensing,
biological agents achieve a form of embodied intelligence
that is both adaptive and efficient.

While foundation models for robotics (FMRs) have in-
creasingly embraced vision-language inputs to guide behav-
ior, robust and generalizable robotic intelligence requires the
integration of a broader range of sensorimotor feedback,
particularly tactile and proprioceptive signals. In contrast
to vision, which offers global scene understanding, touch
provides dense, high-resolution, and spatially distributed
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Fig. 3. Sensorimotor feedback modalities—vision, touch, and propriocep-
tion—must be fused in FMRs to support real-time, adaptive manipulation
and control.

feedback along the robot’s body. This tactile sensing should
also incorporate thermal information, enabling the robot
to detect temperature variations during contact—crucial for
safety and material awareness. These local, contact-rich
signals are essential for physical interaction, manipulation,
and reactive adaptation [18].

Aware of the fact that vision alone is insufficient to capture
crucial aspects of real-world manipulation, such as contact
force, slippage, or texture [18], researchers have proposed
vision-based tactile sensors (e.g., DIGIT [19], GelSight [20])
and tactile representation learning to enable robots to per-
ceive detailed surface geometry and contact dynamics. When
coupled with proprioception, which informs joint positions,
velocities, and internal force estimates, these modalities form
the basis of reactive low-level control and adaptive phys-
ical intelligence. However, current tactile sensors remain
limited in several key ways. They are typically localized to
specific contact points, such as fingertips or grippers, and
fail to provide whole-body coverage. Most designs do not
offer temperature sensing, a critical modality for detecting
object properties, safety risks, or human contact. For truly
robust physical interaction, tactile sensing in robots should
be skin-like: distributed across the body, soft, conformable,
and capable of capturing pressure, shear, and heat over large
surface areas.

To fully exploit sensorimotor feedback, FMRs must move
beyond vision-language-action models and adopt archi-
tectures that can process and fuse multi-modal temporal
streams—integrating visual perception, tactile feedback, and
internal body state in real time as illustrated in Fig.3.
This demands not only novel data collection pipelines that
capture rich contact and motion data, but also representa-
tion learning strategies that align different modalities in a
shared, action-centric space. Foundation models can benefit
from cross-modal contrastive learning, tactile-conditioned
policy learning, and feedback-driven action refinement
mechanisms.

Incorporating touch and proprioception into FMRs
promises more reliable, compliant, and autonomous robots
capable of handling uncertainty, fragility, and variability
in real-world tasks. From adjusting grip based on slip, to
delicately folding fabric, or securely handing over objects to
humans, sensorimotor feedback is a key enabler of safe and
intelligent physical interaction.

VI. ENABLING FMRS WITH GROUNDED
NEUROCOGNITIVE STRUCTURED REASONING

Humans acquire structured reasoning not only through
abstract thinking but through years of grounded perceptual
and motor experiences [21, 22, 23] . Early in develop-
ment, infants begin to form causal models of the world by
interacting with objects, observing outcomes, and forming
sensorimotor routines. Over time, these interactions give rise
to increasingly complex forms of reasoning: from spatial
awareness and tool use to hierarchical goal planning and
symbolic inference. Another critical element is grounded
semantic memory, which connects abstract concepts to
perceptual and sensorimotor experiences, enabling context-
aware reasoning and flexible task generalization. For in-
stance, a child learns that a cup’ is not just an object with a
label but something that affords holding liquids, is associated
with drinking, and can be grasped in various ways depending
on its orientation and content. A key component of this
progression is procedural memory, which encodes reusable,
composable motor routines and supports the chaining of
low-level skills into complex behaviors. This progression is
deeply embodied—human reasoning is anchored in bodily
action, episodic memory, and multisensory feedback. Neural
mechanisms supporting this development include the pre-
frontal cortex for executive planning, the motor cortex for
action routines, and associative cortical areas that integrate
sensory inputs with past experiences and conceptual knowl-
edge.

Recent efforts in robotics and Al have seeked for such
grounded neurocognitive capabilities and proposed first steps
toward Embodied Chain-of-Thought (E-CoT) reasoning
[24, 6]. These approaches extend traditional chain-of-thought
reasoning—originally developed for language models—to
agents that interact physically with their environment. By
decomposing high-level goals into structured action steps, E-
CoT enables FMRs to plan and act in a way that is more in-
terpretable and generalizable. Recent models combine high-
level symbolic planning with low-level action primitives,
integrating vision-language models with trajectory prediction
or affordance-based control. Some systems also incorporate
feedback loops for updating plans based on real-time sensory
inputs.

However, current E-CoT implementations remain far from
replicating the robustness and flexibility of human grounded
reasoning. They often rely on static decompositions, prede-
fined action vocabularies, or scripted planners, and struggle
to revise plans when faced with novel or uncertain envi-
ronments. Unlike humans, they lack rich episodic mem-
ory for recalling past strategies, semantic grounding across
modalities, or procedural fluency for fluid motor execution.
Moreover, they typically do not engage in self-monitoring or
introspection, making them brittle in open-ended tasks [25].

To advance toward truly grounded structured reasoning
in FMRs, future research must go beyond symbolic de-
composition and integrate reasoning directly with embodied
experience. This includes: learning hierarchical latent action



abstractions grounded in multimodal feedback; incorporating
memory architectures that blend semantic, episodic, and
procedural knowledge; enabling real-time plan adaptation
and failure recovery; and training models in environments
that require flexible goal re-evaluation and causal inference
[26, 27]. By aligning reasoning processes with embodied sen-
sorimotor loops, FMRs can evolve toward more autonomous,
explainable, and human-like intelligence.

VII. MAKING FMRS SELF-PLAY IN KINDERGARTENS

Human children learn through spontaneous play, curiosity,
and trial-and-error exploration [21]. In kindergarten and
beyond, they experiment, manipulate objects, and invent
games—not for extrinsic rewards, but for the intrinsic joy
of discovery. These self-motivated activities are critical for
developing fine motor skills, physical coordination, social
reasoning, and causal understanding. To build Foundation
Models for Robotics (FMRs) that achieve similar levels of
generalization and adaptability, we must endow them with
mechanisms for self-motivated learning and exploratory
interaction.

In robotics, this translates into developing systems that can
learn not only from expert demonstrations or task-specific
supervision, but also from self-play, curiosity-driven explo-
ration, and simulated environments that present a diverse
range of interactive scenarios. Simulation-based learning
plays a key role in enabling FMRs to accumulate diverse
experiences required for scalable self-supervised learning
[28, 29, 30]. However, most existing simulation environ-
ments are task-specific and static [31, 32], limiting their
usefulness for open-ended skill discovery. To achieve more
generalizable and adaptive behavior, FMRs should be trained
in dynamically generated simulation environments that
can be configured on the fly—e.g., through text prompts
or structured language instructions [33]. This would allow
robotic agents to encounter novel scenes, object combina-
tions, and goals, expanding their experiential diversity.

Within these environments, FMRs can safely and effi-
ciently explore physical dynamics, object affordances, and
action outcomes across millions of episodes—much like
how children acquire intuition through repetitive play. Rich
simulated environments can provide randomized variations in
tasks, objects, and contexts, facilitating curriculum learn-
ing, robustness, and transfer.

Moreover, self-motivated agents can be equipped with in-
trinsic motivation signals, such as prediction error, novelty,
empowerment, or learning progress, to drive autonomous
exploration. When coupled with memory and generalist poli-
cies, these mechanisms allow FMRs to acquire transferrable
sensorimotor skills, adapt to new goals, and develop priors
about the physical world without relying solely on human
supervision. This paradigm aligns with recent advances in
unsupervised and self-supervised reinforcement learning, and
offers a scalable path toward autonomous skill acquisition.

Through self-play in these varied and open-ended environ-
ments, FMRs also acquire an internal world model—a pre-
dictive representation of the environment that enables them

to simulate the outcomes of actions, reason about causality,
and plan ahead. This internal model serves as the robot’s
embodied understanding of how the physical world behaves,
supporting imagination-based learning and efficient decision-
making [34]. This is essential for lifelong learning, where
robots continually build upon prior experience, composing
new skills from previously acquired ones, and refining their
world model over time. Through this process, FMRs develop
the ability to reuse, adapt, and generalize knowledge across
diverse tasks and environments.

For open-ended multi-task learning, to enable the gen-
eralization not only horizontally to target tasks of similar
complexity to the source tasks, but also to upscale to target
tasks of growing complexity, the idea of decomposition and
composition of actions into sequences of reusable primitives
has been formalised as the motor schema theory by [35].
The theory considers that a set of action primitives might be
memorised, to be retrieved and combined by the higher level
to generate desired actions. The ability to compositionally
combine behaviors is thought to be central to generalized in-
telligence in humans and a necessary component for artificial
intelligent systems. A hierarchical description of actions has
been proposed in neuroscience (eg [36]) and in behavioural
psychology (eg. [37]).

To tackle learning multiple tasks of complexities unknown
a-priori in open-ended learning [25], the robot needs to face
the curse of dimensionality, as the search for policies is
doubled with a search for tasks to learn, while the possible
tasks space increases combinatorially. Therefore, efficient
exploration is crucial. Applying Reinforcement Learning
(RL) [38] to compositional tasks is all the more challenging
as the rewards for temporally extended tasks are even more
sparse. Hierarchical Reinforcement Learning (HRL) [39] has
been proposed to manage long-horizon tasks. Recent works
in HRL [40, 41, 42, 43, 44] have shown that learning an
abstract goal representation is key to proposing semantically
meaningful subgoals and to solving more complex tasks. In
particular, representations that capture environment dynamics
over an abstract temporal scale have been shown to provide
interesting properties with regards to bounding the subopti-
mality of learned policies under abstract goal spaces ([41,
45, 44]), as well as efficiently handling continuous control
problems. Other works [46, 47, 48] have studied various
forms of spatial abstractions for goal spaces. On spatial or
temporal abstractions, FMRs promise reliable representations
generalisable to various real-world settings and tasks, to build
upon hierarchical tasks.

However, the previously cited works in HRL have only
shown their performance in a virtual environment, with
a finite level of hierarchy. To tackle the increase of the
task space in open-ended hierarchical learning, intrinsic
motivation has been useful for robots in real-world setting
and in simulation to explore both the high-dimensional task
space and the policy space and to devise autonomously
their learning curriculum [49, 50]. These active learning
algorithms based on intrinsic motivation choose at the same
time what target task to focus on, which source tasks to reuse



and how to transfer knowledge about task decomposition.

To approach the generality and flexibility of human devel-
opment, FMRs should be given the capacity to learn through
play: guided by curiosity, simulated experience, and self-
generated goals, while leveraging feedback from multiple
sensory modalities. Such self-driven learning loops are key
to building truly adaptive, life-long learning robots capable
of thriving in open-ended, dynamic environments.

VIII. INTERACTIVE ROBOT LEARNING

While FMRs are mostly black box models, the question
of alignment with human representation of actions remains
unaddressed, despite its importance in communication with
humans about actions or tasks, and to enhance human-robot
collaboration with coordination and turn taking between hu-
mans and robots. Seurin et al. [51] has explored how Natural
Language can convey multiple sub-tasks by describing what
the agent must accomplish, and showed that the efficiency of
the communication instructions in natural language can be
increased by repeated interaction between the robot and the
tutor. Interaction between the robot and the tutor seems key
to aligning representations. However, for FMRs that need
massive data to train, they need to be complemented with
self-exploration. As part of human-in-the-loop approach [52],
the field of Interactive learning assumes that a human will
be able to assist the robot in the evaluation by providing
feedback, guidance and/or showing optimal actions.

Whereas reinforcement learning and supervised (or imi-
tation) learning have been traditionally opposed we argue
that both worlds are on the contrary complementary and
highlight the merits of merging the two fields. While an
increasing stream of machine learning works propose to
combine the two paradigms [53, 54], including reinforcement
learning from human feedback [55, 56, 57] including for
large language models [58], most often, the agent in these
works undergoes the interaction passively. We will refer to
the approaches where the robot optimizes its interaction with
tutors in an active way as active imitation learning, a term
defined in [59], as an imitation learning paradigm covering
cases where an observer can influence the frequency and the
value of demonstrations that it is shown.

Research in developmental psychology indicates that so-
cial interaction is not only for social pleasure but can serve
for learning and exploration of the environment. While most
theories of infant social learning focus on how infants learn
whatever and whenever the adults decide to teach them,
recent findings suggest that social learning is not a passive
process but that infants play an active role in collecting
information and adapting their learning strategy according
to their interests. Indeed, infants show a preference to learn
from reliable people [60], and their attention towards adults
is influenced by the adult’s role in bringing new information
[61]. Infants show curiosity and active contribution to social
transmission of knowledge [62].

For robot learning, Nguyen [63] proposes to frame the
interaction with human teachers as a reinforcement learn-
ing problem, to enable learning agents to learn multiple

parametrised tasks by devising their own learning strat-
egy: they choose actively what do learn, when to learn
and thus their own curriculum; and also what, when and
whom to imitate. Reinforcement learning is therefore not
only about an agent interacting with a physical environment
but also with a social environment. Using intrinsic motivation
as an active learning criterion, SGIM-ACTS [64] learns
several parametrised tasks by choosing its teachers and the
timing of its requests, while SGIM-PB [65] uses transfer
of knowledge between tasks by learning the hierarchical
relationship between the parametrised tasks, showing an
alignment with the human representation of task hierarchy.

Thus, active imitation learning based on intrinsic moti-
vation can be key for FMRs to simultaneously collect data
efficiently and to align its representation with humans, for
efficient communication and collaboration.

IX. CONCLUSIONS

This paper explored several foundational dimensions for
advancing Foundation Models for Robotics (FMRs), with
an emphasis on bio-inspired principles such as memory,
grounded structured reasoning, sensorimotor feedback, and
self-motivated interaction-based learning. Drawing from neu-
roscience and developmental psychology, we outlined how
robots can benefit from memory systems analogous to those
of humans, how embodied chain-of-thought (E-CoT) rea-
soning offers a pathway toward interpretable, goal-directed
robotic behavior and how interactive robot learning can be
key to upscaling to tasks of growing complexity and aligning
the agent’s representation with humans.

While we focused on perception, reasoning, and skill
acquisition, critical aspects of reliability, safety, and trust-
worthiness remain underexplored in this paper due to space
limitations. These are fundamental properties for deploying
FMRs in real-world environments, particularly in human-
facing applications. Key open challenges include how to
align robot actions with human safety norms and societal
values, how to ensure robust behavior under distributional
shifts or unexpected conditions, and how to make FMRs
interpretable and verifiable in their decision-making.
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