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Abstract: In open-ended continuous environments, robots need to learn multiple parameterised
control tasks in hierarchical reinforcement learning. We hypothesise that the most complex tasks can
be learned more easily by transferring knowledge from simpler tasks, and faster by adapting the
complexity of the actions to the task. We propose a task-oriented representation of complex actions,
called procedures, to learn online task relationships and unbounded sequences of action primitives to
control the different observables of the environment. Combining both goal-babbling with imitation
learning, and active learning with transfer of knowledge based on intrinsic motivation, our algorithm
self-organises its learning process. It chooses at any given time a task to focus on; and what, how,
when and from whom to transfer knowledge. We show with a simulation and a real industrial robot
arm, in cross-task and cross-learner transfer settings, that task composition is key to tackle highly
complex tasks. Task decomposition is also efficiently transferred across different embodied learners
and by active imitation, where the robot requests just a small amount of demonstrations and the
adequate type of information. The robot learns and exploits task dependencies so as to learn tasks of
every complexity.

Keywords: curriculum learning; continual learning; hierarchical reinforcement learning; interactive
reinforcement learning; imitation learning; multi-task learning; active imitation learning; hierarchical
learning; intrinsic motivation

1. Introduction
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Figure 1. Real Yumi setup: the 7-DOF industrial robot arm can produce sounds by moving the blue
and green objects and touching the table. See https://youtu.be/6gQn3JGhLvs for an example task.

Let us consider a reinforcement learning (RL) [1] robot placed in an environment
surrounded by objects, without external rewards, but with human experts’ help. How
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can the robot learn multiple tasks such as manipulating an object, at the same time as
combining objects together or other complex tasks that requires multiple steps?

In the case of tasks with various complexities and dimensionalities, without a priori
domain knowledge, the complexities of actions considered should be unbounded. If we
relate the complexity of actions to their dimensionality, actions of unbounded complexity
should belong to spaces of unbounded dimensionality. For instance, if an action primitive
of dimension n is sufficient for placing an object to a position, a sequence of 2 primitives, i.e.,
an action of dimension 2n is sufficient to place the stick on 2 xylophone keys. Nevertheless,
tunes have variable lengths and durations. Likewise, as a conceptual illustration, an
unbounded sequence of actions is needed to control the interactive table and play tunes of
any length in a setup like in Figure 1. In this work, we consider that actions of unbounded
complexity can be expressed as action primitives and unbounded sequences of action primitives,
also named in [2] respectively micro and compound actions. The agent thus needs to estimate
the complexity of the task and deploy actions of the corresponding complexity.

To solve this unbounded problem, the learning agent should be starting small before
trying to learn more complex tasks as theorised in [3]. Indeed, in multi-task learning
problems, some tasks can be compositions of simpler tasks (which we call ‘hierarchically
organised tasks’). This approach has been coined ’curriculum learning’ in [4]. The idea of this
approach is to use the knowledge acquired from simple tasks to solve more complex tasks
or high level of hierarchy tasks, or in other words, to leverage transfer learning (TL) [5–7].
Uncovering the relationship between tasks is useful for transferring knowledge from a task
to another. The insight behind TL is that generalization may occur not only within tasks,
but also across tasks. This is relevant for compositional tasks. But how can the learning
agent discover the decomposition of tasks and the relationship between tasks? Moreover,
transfer of knowledge between tasks can also be completed by transfer of knowledge from
teachers. Indeed, humans and many animals do not just learn a task by trial and error.
Rather, they extract knowledge about how to approach a problem from watching other
people performing a similar task. Behavioural psychology studies [8,9] highlight the impor-
tance of social and instructed learning, “including learning about the consequences, sequential
structure and hierarchical organisation of actions” [10]. Imitation is a mechanism for emerging
representational capabilities [11]. How can imitation enable the task decomposition into
subtasks, and which kind of information should be transferred from the teacher to the
learning agent to enable effective hierarchical reinforcement learning? How robust is this
transfer to correspondence problems? How can teachers avoid demonstrations that could
correspond to behaviours the agent already masters or require pre-requisites the robot has
not learned yet?

This work addresses multi-task learning in open-ended environments by studying
the role of transfer of knowledge across tasks with the hypothesis that some tasks are
interrelated, and the role of transfer of knowledge from other learners or experts to
determine how information is best transferred for hierarchical reinforcement learning:
when, what and whom to imitate?

2. State of the Art

To learn unbounded sequences of motor actions for multiple tasks, we examine recent
methods for curriculum learning based on intrinsic motivation. We also review the methods
for hierarchical reinforcement learning and imitation learning, which can be described as
two types of transfer of knowledge.

2.1. Intrinsic Motivation for Cross-Task Interpolation

In continual learning in an open-ended world without external rewards, to discover
repertoires of skills, agents must be endowed with intrinsic motivation (IM), which is
described in psychology as triggering curiosity in human beings [12], to explore the di-
versity of outcomes it can cause and to control its environment [13,14]. These methods
use a reward function that is not shaped to fit a specific task but is general to all tasks
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the robot will face. Tending towards life-long learning, this approach, also called artifi-
cial curiosity, may be seen as a particular case of reinforcement learning using a reward
function parametrised by internal features to the learning agent. One important form of
IM system is the ability to autonomously set one’s own goals among the multiple tasks to
learn. Approaches such as [15,16] have extended the heuristics of IM with goal-oriented
exploration, and proven to be able to learn fields of tasks in continuous task and action
spaces of high but bounded dimensionality. More recently, IMGEP [17] and CURIOUS [18]
have combined intrinsic motivation and goal babbling with deep neural networks and
replay mechanisms. They could select goals in a developmental manner from easy to more
difficult tasks. Nevertheless, these works did not leverage cross-goal learning but only
used interpolation between parametrised goals over a common memory dataset.

2.2. Hierarchically Organised Tasks

Nevertheless, in the case of tasks with various complexities and dimensionalities,
especially with action spaces of unbounded dimensionality, those methods become in-
tractable and the volume of the task and action spaces to explore grows exponentially.
In that case, exploiting the relationships between the tasks can enable a learning agent
to tackle increasingly complex tasks more easily, and heuristics such as social guidance
can highlight these relationships. The idea would be to treat complex skills as assem-
bly tasks, i.e., sequences of simpler tasks. This approach is in line with descriptions of
motor behaviour of humans and primates as composing their early motions and being
recombined after a maturation phase into sequences of action primitives [19]. In artificial
systems, this idea has been implemented as a neuro-dynamic model by composing action
primitives in [20] and has been proposed in [21] to learn subtask policies and a scheduler
to switch between subtasks, with offline off-policy learning, to derive a solution that is
time-dependent on a scheduler. On the other hand, options were proposed as a temporally
abstract representation of complex actions made of lower-level actions and revealed faster
to reach interesting subspaces as reviewed in [22]. Learning simple skills then combining
them by skill chaining is shown in [23] more effective than learning the sequences directly.
Other approaches using temporal abstraction and hierarchical organization have been
proposed [24].

More recently, Intrinsic Motivation has also tacked hierarchical RL to build increas-
ingly complex skills by discovering and exploiting the task hierarchy using planning
methods [25]. However it does not model explicitly a representation of the task hierarchy,
letting planning compose the sequences in the exploitation phase. IM has also been used
with temporal abstraction and deep leaning in h-DQN [26] with meta-level learning sub-
goals and controller level policies over atomic actions. However h-DQN was only applied
to discrete state and action spaces. A similar idea has been proposed for continuous action
and state spaces in [27], where the algorithm IM-PB relies on a representation, called
procedure, of the task decomposition. A fully autonomous intrinsically motivated learner
successfully discovers and exploits the task hierarchy of its complex environment, while
still building sequences of action primitives of adapted sizes. These approaches could
generalise across tasks by re-using the policies of subgoals for more complex tasks, once
the task decomposition is learned. We would like to investigate here for continuous action
and state spaces, the role transfer of knowledge on task decomposition in hierarchical rein-
forcement learning, when there are several levels of hierarchy; and how transfer learning
operates when tasks are hierarchically related compared to when tasks are similar.

2.3. Active Imitation Learning (Social Guidance)

Imitation learning techniques or Learning from Demonstrations (LfD) [28,29] provide
human knowledge for complex control tasks. However, imitation learning is often limited
by the set of demonstrations. To overcome sub-optimality and noisiness of demonstrations,
imitation learning has recently been combined with RL exploration, for instance when
initial human demonstrations have successfully initiated RL in [30,31]. In [32] combination
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of transfer learning, learning from demonstration and reinforcement learning significantly
improve both learning time and policy performance for a single task. However, in the
previously cited works, two hypotheses are frequently made:

• the transfer of knowledge needs only one type of information. However, for multi-
task learning, the demonstrations set should provide different types of information
depending on the task and the knowledge of the learning. Indeed, in imitation
learning works, different kinds of information for transfer of knowledge have been
examined separately, depending on the setup at hand: external reinforcement sig-
nals [33], demonstrations of actions [34], demonstrations of procedures [35], advice
operators [36] or disambiguation among actions [37]. The combination of different
types of demonstrations has been studied in [38] for multi-task learning, where the pro-
posed algorithm Socially Guided Intrinsic Motivation with Active Choice of Teacher
and Strategy (SGIM-ACTS) showed that imitating a demonstrated action and outcome
has different effects depending on the task, and that the combination of different types
of demonstrations with autonomous exploration bootstraps the learning of multi-
ple tasks. For hierarchical RL, algorithm Socially Guided Intrinsic Motivation with
Procedure Babbling (SGIM-PB) in [35] could also take advantage of demonstrations
of actions and task decomposition. We propose in this study to examine the role
of each kind of demonstrations with respect to the control tasks in order to learn
task hierarchy.

• the timing of these demonstrations has no influence. However, in curriculum learning
the timing of knowledge transfer should be essential. Furthermore, the agent best
knows when and what information it needs from the teachers, and active requests for
knowledge transfer should be more efficient. For instance, a reinforcement learner
choosing when to request social guidance was shown in [39] making more progress.
Such techniques are called active imitation learning or interactive learning, and echo
the psychological descriptions of infants’ selectivity in social partners and its link to
their motivation to learn [40,41]. Active imitation learning has been implemented [42]
where the agent learns when to imitate using intrinsic motivation for a hierarchical
RL problem in a discrete setting. For continuous action, state and goal spaces, the
SGIM-ACTS algorithm [38] uses intrinsic motivation to choose not only the kind of
demonstrations, but also when to request for demonstrations and who to ask among
several teachers. SGIM-ACTS was extended for hierarchical reinforcement learning
with the algorithm Socially Guided Intrinsic Motivation with Procedure Babbling
(SGIM-PB) in [35]. In this article, we will study whether a transfer of a batch of data or
an active learner is more efficient to learn task hierarchy.

2.4. Summary: Our Contribution

We combine both types of transfer of knowledge, across tasks and from experts, to
address multi-task learning in a hierarchical RL problem in a non-rewarding, continuous
and unbounded environment, where experts with their own field of expertise, unknown to
the robot, are available at the learner’s request. We propose to continue the approach initi-
ated in [35,43] with the SGIM-PB algorithm that combines intrinsic motivation, imitation
learning and transfer learning to enable a robot to learn its curriculum by:

• Discovering and exploiting the task hierarchy using a dual representation of complex
actions in action and outcome spaces;

• Combining autonomous exploration of the task decompositions with imitation of the
available teachers, using demonstrations as task dependencies;

• Using intrinsic motivation, and more precisely its empirical measures of progress, as
its guidance mechanism to decide which information to transfer across tasks; and for
imitation, when how and from which source of information to transfer.

In this article, we examine how task decomposition can be learned and transferred
from a teacher or another learner using the mechanisms of intrinsic motivation in au-
tonomous exploration and active imitation learning for discovering task hierarchy for
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cross-task and cross-learner transfer learning. More precisely, while in [35] we showed on
a toy simulation faster learning and better precision in the control, in this article, we show
on an industrial robot that task decomposition is pivotal to completing tasks of higher
complexity (by adding more levels of hierarchy in the experimental setup), and we test
the properties of our active imitation of task decomposition : it is valid for cross-learner
transfer even in the case of different embodiments, and active imitation proves more
efficient than imitation of a batch dataset given from initialisation. This use-case study
enables deeper analysis into the mechanisms of the transfer of knowledge.

The article is organized as follows: we describe our approach in Section 3; and present
our setups on the physical simulator and the real robot of an industrial robot arm in
Section 4. The results are analysed in Section 5 and discussed in Section 6; finally we
conclude this article in Section 7.

3. Our Approach

Grounding our work in cognitive developmental robotics [44,45], we propose an
intrinsically motivated learner able to self-organize its learning process for multi-task
learning of hierarchically organized tasks by exploring action, task and task decomposition
spaces. Our proposed algorithm combines autonomous exploration with active imitation
learning into a learner discovering the task hierarchy to reuse its previously gained skills for
tackling more complex ones, while adapting the complexity of its actions to the complexity
of the task at hand.

In this section, we first formalize the learning problem we are facing. Then we describe
the algorithm Socially Guided Intrinsic Motivation with Procedure Babbling (SGIM-PB).
This algorithm uses a task-oriented representation of task decomposition called procedures
to build more and more complex actions, adapting to the difficulty of the task.

3.1. Problem Formalization

Let us consider a robot, able to perform motions through the use of action primitives
πθ ∈ Π. We suppose that the action primitives are parametrised functions with parameters
of dimension n. We note the parameters θ ∈ Rn. The action primitives represent the
smallest unit of motions available to the robot. The robot can also chain multiple action
primitives together to form sequences of action primitives of any size k ∈ N. We consider that
the robot can execute actions in the form of a sequence of one or several action primitives.
We note π an action and will precise the parameter θ in the case of an action primitive πθ .
We note ΠN the complete space of actions of any size available to the learner.

The environment can change as a consequence of the motions of the robot. We call
outcomes ω ∈ Ω these consequences. They can be of various types and dimensionalities,
and are therefore split in outcome subspaces Ωi ⊂ Ω. Those outcomes can also be of
different complexities, meaning that the actions generating these outcomes may require
different numbers of action primitives to chain. The robot aims for learning generalisation
(how to reach a range of outcomes as broad as possible), and learning speed. It learns
which action to perform depending on the outcomes to generate, known as the inverse
model M : ω 7→ π. A task is thus a desired outcome, and the inverse model indicates
which action can reach it. As more than one action can lead to the same outcome, M is not
a function.

We take the trial and error approach, and we suppose that the error can be evaluated
and Ω is a metric space, which means the learner can evaluate a distance between two
outcomes d(ω1, ω2).

3.2. Procedures

Let us noteH the hierarchy of the tasks used by our robot. H is formally defined as a
directed graph where each node is a task T. Figure 2 shows a representation of task hierar-
chy. As our algorithm is tackling the learning of complex hierarchically organized tasks,
exploring and exploiting this hierarchy could ease the learning of the most complex tasks.
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Figure 2. Task hierarchy of the Yumi experimental setup : blue lines represent task decomposition
into procedures for the simulation setup, dashed lines for the physical setup, red lines for the direct
inverse model. Eg. to move a blue object placed initially at (x0, y0) to a desired position (x1, y1), the
robot can carry out task (ωi) that consists in moving its end-effector to (x0, y0) to pick it, then task
(ωj) that consists in moving the end-effector to (x1, y1). These subtasks are executed with respectively
action primitives πi and π j. Therefore to move the object, the learning agent can use the sequence of
action primitives (πi, π j).

To represent and learn this task hierarchy, we are using the procedure framework. This
representation has been created as a way to push the learner to combine previously learned
tasks to form more complex ones. A procedure is a combination of outcomes (ω1, ω2) ∈ Ω2.
Carrying out a procedure (ω1, ω2) means executing sequentially each component π1,2 of
the action sequence, where πi is an action that reaches ωi ∀i ∈ J1, 2K.

We can formalise task decomposition as a mapping from a desired outcome ωg to a
procedure P : ωg 7→ (ω1, ω2). ω1 and ω2 are then called subtasks. In the task hierarchyH,
an outcome represents a task node in the graph, while the task decomposition represents
the directed edges and the procedure is the list of its successors. H is initialised as a densely
connected graph, and the exploration of SGIM-PB prunes the connections by testing which
procedures or task decompositions respect the ground truth. The procedure space or task
decomposition space Ω2 is a new space to be explored by the learner to discover and
exploit task decompositions. Our proposition is to derive the inverse model M by using
recursively the inverse model M and the task decomposition P until we derive a sequence
of action primitives following this recursion:

M(ωg) 7→
{

(πθ1 , ...πθk ) with k ∈ N
(M(ω1), M(ω2)) if P(ωg) 7→ (ω1, ω2)

3.3. Algorithm

We here present the algorithm SGIM-PB (Socially Guided Intrinsic Motivation with
Procedure Babbling). In Section 5.5, we will also look at the variant named SGIM-TL
(Socially Guided Intrinsic Motivation with Transferred Lump), which is provided at initial-
isation with a dataset of transferred procedures and their corresponding reached outcomes:
{(ωi, ωj), ωr}. The main differences between SGIM-PB and SGIM-TL are outlined and
they are contrasted with former versions IM-PB and SGIM-ACTS in Table 1. SGIM-PB and
SGIM-TL propose to learn both M and P simultaneously.

https://doi.org/10.3390/app11030975


Duminy, N.; Nguyen, S.M.; Zhu, J.; Duhaut, D.; Kerdreux, J. Intrinsically Motivated Open-Ended Multi-Task Learning Using Transfer Learning to
Discover Task Hierarchy. Appl. Sci. 2021, 11, 975. https://doi.org/10.3390/app11030975 , 975 7 of 30

Table 1. Differences between SGIM-PB, SGIM-TL, SGIM-ACTS and IM-PB.

Algorithm Action Representation Strategies σ Transferred Dataset Timing of the Transfer Transfer of Knowledge

IM-PB [27] parametrised actions,
procedures

auton. action space
explo., auton.
procedural space explo.

None NA cross-task transfer

SGIM-ACTS [38] parametrised actions
auton. action space
explo., mimicry of an
action teacher

Teacher demo. of
actions

Active request by the
learner to the teacher imitation

SGIM-TL parametrised actions,
procedures

auton. action space
explo., auton.
procedural space explo.,
mimicry of an action
teacher, mimicry of a
procedure teacher

Another robot’s
procedures, Teacher
demo. of actions and
procedures

Procedures transf. at
initalization time,
Active request by the
learner to the teacher

cross-task transfer,
imitation

SGIM-PB parametrised actions,
procedures

auton. action space
explo., auton.
procedural space explo.,
mimicry of an action
teacher, mimicry of a
procedure teacher

Teacher demo. of
actions and procedures

Active request by the
learner to the teacher

cross-task transfer,
imitation

SGIM-PB starts learning from scratch. It is only provided with :

• Dimensionality and boundaries of the action primitive space Π;
• Dimensionality and boundaries of each of the outcome subspaces Ωi ⊂ Ω;
• Dimensionality and boundaries of the procedural spaces (Ωi, Ωj) ⊂ Ω2, defined as all

possible pairs of two outcome subspaces.

Our SGIM-PB agent is to collect data in order to learn how to reach all outcomes by
generalising from the sampled data. This means it has to learn for all reachable outcomes,
the actions or procedures to use to reach the outcome. This corresponds to learning the
inverse model M. The model uses a local regression based on the k-nearest neighbours
from the data collected by exploration. In order to do that, the learning agent is provided
with different exploration strategies (see Section 3.3.1), that are defined as methods to
generate a procedure or action for any given outcome. The 4 types of strategies available to
the robot are: two autonomous exploration strategies and two interactive strategies per
task type. For the autonomous exploration strategies, we consider action space exploration
and procedural space exploration. For the interactive strategies, we consider mimicry of
an action or a procedure teacher of the task type: the former’s demonstrations are motor
actions, while the latter’s are procedures.

As these strategies could be more appropriate for some tasks than others, and as their
effectiveness can depend on the maturity of the learning process, our learning agent needs
to map the outcome subspaces and regions to the best suited strategies to learn them. Thus,
SGIM-PB uses an Interest Mapping (see Section 3.3.2) that associates to each strategy and
region of an outcome space partition an interest measure, so as to guide the exploration by
indicating which tasks are the most interesting to explore at the current learning stage, and
which strategy is the most efficient.

The SGIM-PB algorithm (see Algorithm 1, Figure 3) learns by episodes, and starts each
episode by selecting an outcome ωg ∈ Ω to focus on and an exploration strategy σ. The
strategy and outcome region are selected based on the Interest Mapping by roulette wheel
selection also called fitness proportionate selection, where the interest measure serves as
fitness (see Section 3.3.2).
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Figure 3. SGIM-PB architecture: the arrows show the data transfer between the different blocks, the
numbers between brackets refer to specific line number in Algorithm 1.

Algorithm 1 SGIM-PB and its SGIM-TL variant

Input: the different strategies σ1, ..., σm

Initialization: partition of outcome spaces R← ⊔
i{Ωi}

Input: CASE SGIM-TL: transfer dataset D3 = {(ωi, ωj), ωr}
Initialization: CASE SGIM-TL: episodic memory Memo← {(ωi, ωj), ωr}

1: loop
2: ωg, σ← Select Goal Outcome and Strategy(R)
3: if σ = Autonomous action space exploration strategy then
4: Memo← Goal-Directed Action Optimization(ωg)
5: else if σ = Autonomous procedural space exploration strategy then
6: Memo← Goal-Directed Procedure Optimization(ωg)
7: else if σ = Mimicry of action teacher i strategy then
8: (πd, ωd)← ask and observe demonstrated action to teacher i
9: Memo←Mimic Action(πd)

10: else if σ = Mimicry of procedural teacher i strategy then
11: ((ωdi, ωdj), ωd)← ask and observe demonstrated procedure to teacher i
12: Memo←Mimic Procedure((ωdi, ωdj))
13: end if
14: Update M with collected data Memo
15: R← Update Outcome and Strategy Interest Mapping(R,Memo,ωg)
16: end loop

At each episode, the robot and the environment are reset to their initial states. The
learner uses the chosen strategy to build an action (based or not on a procedure), decom-
posed into action primitives which are then executed sequentially without getting back
to its initial position. Whole actions are recorded, along with their outcomes. Each step
(after each action primitive execution) of the sequence of action primitives execution is also
recorded in Memo.

3.3.1. Exploration Strategies

In an episode under the autonomous action space exploration strategy, the learner
tries to optimize the action π to produce ωg by stochastically choosing between random
exploration of actions and local regression on the k-nearest action sequence neighbours. The
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probability of choosing local regression over random actions is proportional to the distance
of ωg to its nearest action neighbours. This action optimization is called Goal-Directed
Action Optimization and based on the SAGG-RIAC algorithm [15].

In an episode under the autonomous procedural space exploration strategy, the learner
tries to optimize the procedure (ωi, ωj) ∈ Ω2 to produce ωg, by stochastically choosing
between random exploration of the procedural space and local regression on the k-nearest
procedure neighbours. The probability of choosing local regression over random actions
is proportional to the distance of ωg to its nearest procedure neighbours. This process is
called Goal-Directed Procedure Optimization.

In an episode under the mimicry of an action teacher strategy, the learner requests a
demonstration of an action to reach ωg from the chosen teacher. The teacher selects the
demonstration πd as the action in its demonstration repertoire reaching the closest outcome
from ωg. It has direct access to the parameters of πd = (πd1, πd2, . . . , πdl), and explores
locally the action parameters space (we do not consider the correspondence problem from
teachers’ demonstrations).

In an episode under the mimicry of a procedural teacher strategy, the learner requests
a task decomposition of ωg from the chosen teacher. The demonstrated procedure (ωdi, ωdj)
will define a locality in the procedure space for it to explore.

When performing nearest neighbour searches during the execution of autonomous
action and procedure exploration strategies (for local optimization of procedures or actions
or when executing a procedure), the algorithm uses a performance metric which takes into
account the complexity of the underlying action selected:

per f (ωg) = d(ω, ωg)γ
n (1)

where d(ω, ωg) is the normalized Euclidean distance between the target and the reached
outcomes ωg and ω, n is the size of the action chosen (the length of the sequence of
primitives), γ > 1 is a constant used to balance accuracy and complexity of the action. In
our case, we want the learner to mainly focus on accuracy while only avoiding overcomplex
actions whenever possible, so we manually set a small γ = 1.2 very close to the lower limit.

3.3.2. Interest Mapping

After each episode, the learner stores the attempted procedures and actions, along
with their reached outcomes in its memory. It then computes its competence in reaching
the goal outcome ωg by computing the distance d(ωr, ωg) with the outcome ωr it actually
reached (if it has not reached any outcome in Ωi, we use a default value dthres). Then
interest measure is computed for the goal outcome and all outcomes reached during the
episode (including the outcomes from a different subspace than the goal outcome):

interest(ω, σ) = p(ω)/K(σ) (2)

where the progress p(ω) is the difference between the best competence for ω before and
after the episode, K(σ) is the cost associated to each strategy. K(σ) is a meta parameter
to favour some strategies such as autonomous ones, to push the robot to rely on itself as
much as possible instead of bothering teachers.

The interest measures are then used to partition the outcome space Ω. The trajectory
of the episode is added to their partition with hindsight experience replay (both goal and
reached outcomes are taken into account), storing the values of the strategy σ, the outcome
parameter, and the interest measure. When the number of outcomes added to a region
exceeds a fixed limit, the region is split into two regions with a clustering boundary that
separates outcomes with low from those with high interest. This method is explained
in more details in [46]. The interest mapping is a tool to identify the zone of proximal
development where the interest is maximal, and to organize the learning process.
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This interest mapping is initialized with the partition composed of each outcome type
Ωi ⊂ Ω. For the first episode, the learning agent always starts by choosing a goal and a
strategy at random.

In particular, this interest mapping enables SGIM-PB to uncover the task hierarchy
by associating goal tasks and procedures. When testing a specific procedure (ωi, ωj) ∈ Ω2

that produces ω instead of the goal ωg under the procedural space exploration or the
mimicry of a procedure teacher strategies, SGIM-PB assesses the performance of this
task decomposition and records the trajectory of the episode in the memory. This task
decomposition is likely to be reused again during local regression of k-nearest neighbours
for tasks close to ω and ωg and for short sequences of primitives, i.e., if its performance
per f (ωg) = d(ω, ωg)γn is high. Thus the different task decompositions are compared both
for their precision and cost in terms of complexity. At the same time, SGIM-PB updates
the interest map for that strategy. If the procedure is not relevant for the goal ωg, the
procedure is ignored henceforward. On the contrary if the procedure is the right task
decomposition, the interest interest(ω, σ) for this procedure exploration/mimicry strategy
σ increases. Thus, conversely, SGIM-PB continues to explore using the same strategy, and
tests more procedures for the same region of outcomes. As the number of procedures
explored increases and are selected by intrinsic motivation (using the performance and
interest criteria), SGIM-PB associates goal tasks to the relevant procedures, hence builds
up the adequate task decomposition. These associations to procedures constitute the task
hierarchy uncovered by the robot.

4. Experiment

In this section, we present the experiment we conducted to assess the capability of
our SGIM-PB algorithm. The experimental setup features the 7 DOF right arm of an
industrial Yumi robot from ABB which can interact with an interactive table and its virtual
objects. Figure 1 shows the robot facing a tangible RFID interactive table from [47]. The
robot learns to interact with it using its end-effector. It can learn an infinite number of
hierarchically organized tasks regrouped in 5 types of tasks, using sequences of motor
actions of unrestricted size. The experiments have been carried out with the physical
industrial robot ABB and with simulation software provided with the robot, Robotstudio.
While the software provided by the robot can provide static inverse kinematics, it can not
provide movement trajectories.

We made preliminary tests of our SGIM-PB learner on a physical simulator of the
robot. We will call this the simulation setup. In the simulation setup, the end-effector is the
tip of the vacuum pump below its hand. The simulation setup will be modified as a setup
called left-arm setup in Section 5.5.

We also implemented this setup for a physical experiment, to compare both inter-
active strategies more fairly using SGIM-ACTS and SGIM-PB. For that, we modified the
procedural teacher strategy so they have the same limited repertoire from which to draw
demonstrations as action teachers. We also added an extra more complex task without
demonstrations to compare the autonomous exploration capability of both algorithms. The
setup, shown on Figure 1, will be referred to as the physical setup. In the physical setup, the
end-effector is the bottom part of the hand.

In the following subsections, we describe in more details the physical setup and the
simulation setup and their variables, while mentioning their differences. Then we end this
section by presenting the teachers and evaluation methods.

4.1. Experimental Setup

The position of the arm’s tip on the table (see Figure 4) is noted (x0, y0). Two virtual
objects (disks of radius R = 4 cm) can be picked and placed, by placing the arm’s tip
on them and moving it at another position on the table. Once interacted with, the final
positions of the two objects are given to the robot by the table, respectively (x1, y1) and
(x2, y2). Only one object can be moved at a time, otherwise the setup is blocked and the
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robot’s motion cancelled. If both objects have been moved, a burst sound is emitted by
the interactive table, parametrised by its frequency f , its intensity level l and its rhythm b.
It can be maintained for a duration t by touching a new position on the table afterwards.
The sound parameters are computed with arbitrary rules so as to have both linear and non
linear relationships, as follow:

f = (D/4− dmin)4/D (3)

l = 1− 2(ln(r)− ln(rmin))/(ln(D)− ln(rmin)) (4)

b = (|ϕ|/π) ∗ 0.95 + 0.05 (5)

t = d2/D (6)

where D is the interactive table diagonal, (r, ϕ) are the polar coordinates of the green object
in the system centred on the blue object, rmin = 2R, dmin is the distance between the blue
object and closest table corner, and d2 is the distance between the end effector position on
the table and the green object .

y

x
(f, l, b)

(x0,y0)

φ

(x2,y2)

(x1,y1)r

dmin

Ω
0

Ω
4

Ω
2

Ω
1

Ω
3
 (x1,y1,x2,y2)

(f, l, b, t)Ω
5

d2

Figure 4. Representation of the interactive table: the first object is in blue, the second one in green,
the produced burst sound and maintained sound are also represented in top left corner. The outcome
spaces are also represented on this figure with their parameters in black, while the sound parameters
are in red.

The interactive table state is refreshed after each action primitive executed. The robot
is not allowed to collide with the interactive table. In this case, the motor action is cancelled
and reaches no outcomes. Before each attempt, the robot is set to its initial position and the
environment is reset.

4.2. Experiment Variables
4.2.1. Action Spaces

The motions of each joint are controlled by a one-dimensional Dynamic Movement
Primitive (DMP) [48]. We will use the same notations for the DMP parameters, defined by
the system:

τv̇ = K(g− x)− Dv + (g− x0) f (s) (7)

τẋ = v (8)

τṡ = −αs (9)
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where x and v are the position and velocity of the system; s is the phase of the motion; x0
and g are the starting and end position of the motion; τ is a factor used to temporally scale
the system (set to fix the duration of an action primitive execution); K and D are the spring
constant and damping term fixed for the whole experiment; α is also a constant fixed for
the experiment; and f is a non-linear term used to shape the trajectory called the forcing
term. This forcing term is defined as:

f (s) = ∑i wiψi(s)s
∑i ψi(s)

(10)

where ψi(s) = exp(−hi(s − ci)
2) with centers ci and widths hi fixed for all primitives.

There are 1 weights wi per DMP, which is therefore simply noted w.
The weights of the forcing term and the end positions are the only parameters of the

DMP used by the robot. One weight per DMP is used and each DMP controls one joint.
The starting position of a primitive is set by either the initial position of the robot (if it is
starting a new action) or the end position of the preceding primitive. Therefore an action
primitive πθ is parametrized by:

θ = (a0, a1, a2, a3, a4, a5, a6) (11)

where ai = (w(i), g(i)) corresponds to DMP parameters of the joint i: the final joint angle
g(i), and the parameters w(i) of a basis function for the forcing term. The action primitive
space is thus Π = R14, and the complete action space (R14)N.

4.2.2. Outcome Spaces

The outcome spaces the robot learns are hierarchically organized:

• Ω0 = {(x0, y0)}: positions touched on the table;
• Ω1 = {(x1, y1)}: positions of the first object;
• Ω2 = {(x2, y2)}: positions of the second object;
• Ω3 = {(x1, y1, x2, y2)}: positions of both objects;
• Ω4 = {( f , l, b)}: burst sounds produced;
• Ω5 = {( f , l, b, t)}: maintained sounds produced.

The outcome space is a composite and continuous space (for the physical setup
Ω =

⋃5
i=0 Ωi, for the simulation setup Ω =

⋃4
i=0 Ωi), containing subspaces of 2 to 4

dimensions. Multiple interdependencies are present between tasks: controlling the position
of either the blue object (Ω1) or the green object (Ω2) comes after being able to touch the
table at a given position (Ω0); moving both objects (Ω3) or making a sound (Ω4) comes
after being able to move the blue and the green object, the maintained sound (Ω5) is the
most complex task of the physical setup. This hierarchy is shown on Figure 2.

Our intuition is that a learning agent should start by making a good progress in the easiest
task Ω0, then Ω1, Ω2. Once it mastered those easy tasks, it can reuse that knowledge to learn
to achieve the most complex tasks Ω3 and Ω4. We will particularly focus on the learning of the
Ω4 outcome space and the use of the procedure framework for it. Indeed in this setting, the
relationship between a goal outcome in Ω4 and the necessary positions of both objects (Ω1, Ω2)
to reach that goal are not linear. So with this setting, we test if the robot can learn a non-linear
mapping between a complex task and a procedural space. Finally for the physical version,
we see if the robot can reach and explore the most complex task Ω5 in the absence of an
allocated teacher.

4.3. Teachers

To help SGIM-PB in the simulation setup, procedural teachers (strategical cost K(σ) = 5,
compared to K(σ) = 1 for autonomous strategies) were available for every outcome space
except Ω0. Each teacher gives on the fly a procedure adapted to the learner’s request, according
to its domain of expertise and according to a construction rule:
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• ProceduralTeacher1: Ω1 → (Ω2
0);

• ProceduralTeacher2: Ω2 → (Ω2
0);

• ProceduralTeacher3: Ω3 → (Ω1, Ω2);
• ProceduralTeacher4: Ω4 → (Ω1, Ω2).

We also added different action teachers (strategical cost of K(σ) = 10), each expert of
one outcome space:

• ActionTeacher0 (Ω0): 11 demos of action primitives;
• ActionTeacher1 (Ω1): 10 demos of size 2 actions;
• ActionTeacher2 (Ω2): 8 demos of size 2 actions;
• ActionTeacher34 (Ω3 and Ω4): 73 demos of size 4 actions.

In the physical setup, we want to delve into the differences between action and
procedural teachers. So as to put them on an equal footing, we used for all teachers
demonstration datasets of limited sizes. The demonstrations in the physical version of the
action and procedural teachers reach the same outcomes for Ω1, Ω2, Ω3 and Ω4. An extra
action teacher provides demonstrations for the simplest outcome space Ω0:

• ActionTeacher0 (Ω0): 9 demos of action primitives;
• ActionTeacher1 (Ω1): 7 demos of size 2 actions;
• ActionTeacher2 (Ω2): 7 demos of size 2 actions;
• ActionTeacher3 (Ω3): 32 demos of size 4 actions;
• ActionTeacher4 (Ω4): 7 demos of size 4 actions;

The demonstrations for the procedural teachers correspond to the subgoals reached
by the action primitives of the action teachers. The procedural teachers have the same
number of demonstrations as their respective action teachers.

The action teachers were provided to the SGIM-ACTS learner, while the SGIM-PB
algorithm had all procedural teachers and ActionTeacher0. No teacher was provided for
the most complex outcome space Ω5, as to compare the autonomous exploration capability
of both learners.

In both setups, the number of demonstrations was chosen arbitrarily small, and
the higher the dimensionality of the outcome space it teaches, the more demonstrations
it can offer. The demonstrations were chosen so as to cover uniformly the reachable
outcome spaces.

4.4. Evaluation Method

To evaluate our algorithm, we created a testbench set of goals uniformly covering the
outcome space (the evaluation outcomes are different from the demonstration outcomes). It
has 29,200 goals for the real robot and 19,200 goals for simulated version. The evaluation
consists in computing mean Euclidean distance between each of the testbench goals and their
nearest neighbour in the learner memory (dthres= 5).The evaluation is repeated regularly
across the learning process.

Then to assess the efficiency of our algorithm in the simulation setup, we are com-
paring the averaged results of 10 runs of 25,000 learning iterations (each run took about a
week to proceed) of the following algorithms :

• RandomAction: random exploration of the action space ΠN;
• IM-PB: autonomous exploration of the action ΠN and procedural space Ω2 driven by

intrinsic motivation;
• SGIM-ACTS: interactive learner driven by intrinsic motivation. Choosing between

autonomous exploration of the action space ΠN and mimicry of any action teacher;
• SGIM-PB: interactive learner driven by intrinsic motivation. Has autonomous explo-

ration strategies (of the action ΠN or procedural Ω2 space) and mimicry ones for any
procedural teacher and ActionTeacher0;

• Teachers: non-incremental learner only provided with the combined knowledge of all
the action teachers.
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For the physical setup, we are only comparing 1 run of SGIM-ACTS and SGIM-PB
(20,000 iterations or one month of trials for each), as to delve deeper into the study of the
interactive strategies and their impact.

The codes used are available at https://bitbucket.org/smartan117/sgim-yumi-simu
(simulated version), and at https://bitbucket.org/smartan117/sgim-yumi-real (physi-
cal one).

5. Results
5.1. Task Decomposition and Complexity of Actions
5.1.1. Task Hierarchy Discovered

To check whether SGIM-PB is capable of learning the task hierarchy used to build
the setup (see Figure 2), after an exploration of 25,000 compound actions, we tested how
it reaches each of the goals of the testbench. More precisely, to show the task hierarchy
learned by the algorithm, we reported the types of procedures SGIM-PB uses to reach goals
of each goal types and plot in Figure 5 the histogram of the procedures used for Ω1 and Ω4
for the simulated (left column) and for Ω1, Ω4 and Ω5 for physical setup (right column). We
can see that in both setups, the most associated procedural space with each outcome space
corresponds to the designed task hierarchy, namely, Ω1 uses procedures mostly procedures
(Ω0, Ω0) and Ω4 uses (Ω1, Ω2) and Ω5 uses (Ω4, Ω0). It also corresponds to the hierarchy
demonstrated by the procedural teachers. It was even capable to learn the task hierarchy
in the absence of provided teacher for the outcome space Ω5 in the physical setup. The
SGIM-PB learner was able to learn the task hierarchy of the setup using the procedure
framework. The procedure repartition is not perfect though, as other subgoals are also
used. For instance, procedures (Ω1, Ω2) were associated to the Ω1 goals. Although they
correctly reach the goal tasks, they introduce longer sequences of actions and are thus
suboptimal.

Figure 5. Task hierarchy discovered by the SGIM-PB learners: this represents for 3 complex outcome
space the percentage of time each procedural space would be chosen for the physical setup (left) and
the simulated setup (center). The percentage scale is represented in the colorbar (right).

5.1.2. Length of the Chosen Actions

Indeed, this internal understanding of task hierarchy translates into visible actions,
in particular the length of action primitive sequences which should adapt to the level of
hierarchy of the goal task. We analysed which action size is chosen by the local action
optimization function of SGIM-PB, for each goal task of the evaluation testbench. The
results are shown on Figure 6 for each outcome space. In both setups, SGIM-PB was
able to scale the complexity of its actions: using mostly primitive and sequences of 2
primitives for Ω0; sequences of 2 primitives for Ω1 and Ω2; of 4 primitives for Ω4 and Ω3;
and of 5 primitives for Ω5 on the physical setup. It is not perfect as SGIM-PB partially
associated the Ω0 outcome space with 2-action primitives when single action primitives
were sufficient. Because all tasks require the robot to touch the table, and thus has an
outcome Ω0 on the environment, all the complex actions used for the other tasks could be
associated to reach Ω0: the redundancy of this model makes it harder to select the optimal
action size.
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Figure 5. Task hierarchy discovered by the SGIM-PB learners: this represents for the outcome spaces the percentage of times each
procedural space (first subgoal of the procedure per column, second subgoal per row) was chosen. Are represented for the simulation
setup (left) the outcome spaces Ω1 and Ω4 and for the physical Yumi setup (right) the outcome spaces Ω1, Ω4 and Ω5. The ground
truth hierarchy is indicated by a red square.

Figure 6. Histogram of the action size of actions chosen by SGIM-PB for each outcome space. Test results on the testbench tasks on the
simulation (left) and physical setups (right)Figure 6. Histogram of the action size of actions chosen by SGIM-PB for each outcome space. Test

results on the testbench tasks on the simulation (left) and physical setups (right).

This understanding of task complexity and task hierarchy also leads to a better perfor-
mance of SGIM-PB. Figure 7 shows the global evaluation results of all tested algorithms
for the simulated version. It plots the test mean error made by each algorithm to reach the
goals of the benchmark with respect to the number of actions explored during learning.
SGIM-PB has the lowest level of error compared to the other algorithms. Thus SGIM-PB
learns with better precision. This is due to its transfer of knowledge from simple tasks to
complex tasks, after learning task hierarchy, owing to both its use of imitation learning and
the procedure representation.

Figure 7. Evaluation of all algorithms throughout the learning process for the simulation setup, final
standard deviations are given in the legend.

5.2. Imitation Learning Bootstraps the Learning of Procedures: Role of Imitation

First, let us examine the role of imitation by contrasting the algorithms with active
imitation (SGIM-PB and SGIM-ACTS) with the autonomous learners without imitation
(RandomAction and IM-PB). IM-PB is the variation of SGIM-PB with only autonomous
learning, without imitation of actions or imitation of procedures. In Figure 7, both au-
tonomous learners have higher final levels of error than the active imitation learners, which
shows the advantage of using social guidance. Besides, both SGIM-ACTS and SGIM-PB
have error levels dropping below that of the teachers, showing they learned further than the
provided action demonstrations: the combination of autonomous exploration and imitation
learning improves the learner’s performance beyond the performance of the teachers.

Figure 8 plots the evaluation on the simulated setup for each type of tasks. While all
algorithms have about the same performance on the simple task Ω0, we notice a significant
difference for the complex tasks in Ω1, Ω2, Ω3 or Ω4 between the autonomous and the
active imitation learners. The autonomous learners were not able to even reach a goal in
the complex subspaces. In particular, the difference between IM-PB and SGIM-PB means
that imitation is necessary to learn complex tasks, it is not only a speeding-up effect.
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Figure 8. Evaluation of all algorithms per outcome space on the simulation setup (RandomAction
and IM-PB are superposed on all except for Ω0).

These results show that the imitation strategies have improved the performance from
the beginning of the learning process, and this improvement is more visible for com-
plex tasks. More than a speeding effect, imitation enables the robot to reach the first
goals in the complex task subspaces, to be optimised and generalised later on by au-
tonomous exploration, so that SGIM-PB is not bound by the limitations of the demon-
stration dataset.

5.3. Procedures Are Essential for Higher Level of Hierarchy Tasks: Role of Procedures

Second, let us examine the role of procedures, both for imitation and for autonomous
exploration.

5.3.1. Demonstrations of Procedures

To analyse the difference between the different imitation strategies, i.e between imi-
tation of action primitives and imitation of procedures, we can compare the algorithms
SGIM-PB and SGIM-ACTS. While SGIM-PB has procedures teachers for the complex tasks
and can explore the procedure space to learn task decomposition, SGIM-ACTS has action
teachers and does not have the procedure representation to learn task decomposition.
Instead SGIM-ACTS explores the action space by choosing a length for its action primitive
sequence, then the parameters of the primitives.

In Figure 7, we see that SGIM-PB is able to outperform SGIM-ACTS after only 2000 it-
erations, which suggests that procedural teachers can effectively replace action teachers for
complex tasks. More precisely, as shown in Figure 8, for tasks Ω0 where SGIM-ACTS and
SGIM-PB have the same action primitive teacher ActionTeacher0, there is no difference
in performance, and SGIM-PB was outperforming SGIM-ACTS on all the complex tasks,
particularly Ω3.

To understand the learning process of SGIM-PB that leads to this difference in perfor-
mance, let us look at the evolution of the choices of each outcome space (Figure 9) and strategy
(Figure 10). The improvement of performance of SGIM-PB compared to the other algorithms
can be explained in Figure 9 by its choice of task Ω3 in the curriculum for iterations above
10,000 after an initial phase where it explores all outcome spaces. Figure 10, we notice that
SGIM-PB chooses mainly as strategies: ProceduralTeacher3 among all imitation strategies, and
Autonomous procedures among the autonomous exploration strategies. The histogram of each
task-strategy combination chosen for the whole learning process in Figure 11 confirms that
ProceduralTeacher3 was chosen the most frequently among imitation strategies specifically
for tasks Ω3, but SGIM-PB used most extensively Autonomous procedures. Thus SGIM-
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PB performance improvement is correlated with its procedure space exploration with both
Autonomous procedures and procedural imitation strategies.

Figure 9. Evolution of choices of tasks for the SGIM-PB learner during the learning process on the
simulation setup.

This comparison between SGIM-PB and SGIM-ACTS on simulation is confirmed on
the physical setup. The global evaluation in Figure 12 shows a significant gap between
the two performances. SGIM-PB even outperforms SGIM-ACTS after only 1000 iterations,
which suggests that procedural teachers can be more effective than action teachers for
complex tasks.

Figure 10. Evolution of choices of strategies for the SGIM-PB learner during the learning process on
the simulation setup.

The performance per type of tasks in Figure 13 shows that like in the simulation setup,
there is little difference for the simple tasks Ω0 and Ω1, and there is more difference on the
complex tasks Ω3 and Ω4. The more complex the task, the more SGIM-PB outperforms
SGIM-ACTS. These confirm that procedural teachers are better adapted to tackle the
most complex and hierarchical outcome spaces.
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Figure 11. Choices of strategy and goal outcome for the SGIM-PB learner during the learning process
on the simulation setup.

Figure 12. Evaluation of all algorithms throughout the learning process for the physical setup.

Figure 13. Evaluation for each outcome space of the physical Yumi setup.
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5.3.2. Autonomous Exploration of Procedures

Moreover, in the real yumi setup, we have a supplementary type of tasks Ω5, which
are also the highest level of hierarchy tasks. For Ω5, no action or procedural teacher was
provided to SGIM-PB or SGIM-ACTS, therefore we can contrast the specific effects of
autonomous exploration of procedures to autonomous exploration of the action space.
Figure 13 shows that the performance of SGIM-ACTS is constant for Ω5, it is not able to
reach any task in Ω5 even once, while SGIM-PB, owing to the capability of the procedure
framework to reuse the knowledge acquired for the other tasks, is able to explore in this
outcome space.

To understand the reasons for this difference, let us examine the histogram of the
strategies chosen per task in Figure 14. For Ω5, SGIM-PB uses massively procedure space
exploration compared to action space exploration. Owing to autonomous procedure
exploration, SGIM-PB can thus learn complex tasks by using the decomposition of tasks
into known subtasks.

Figure 14. Choices of strategy and goal outcome for the SGIM-PB learner during the learning process
on the physical setup.

This highlights the essential role of the procedure representation and the procedure
space exploration by imitation but also by autonomous exploration, in order to learn
high-level hierarchy tasks, which have sparse rewards.

5.4. Curriculum Learning by SGIM-PB

Given the properties of imitation and procedures that we outlined, is SGIM-PB capable
of choosing the right strategy for each task to build a curriculum starting from simple tasks
before complex tasks?

Figure 14 shows that SGIM-PB uses more procedural exploration and imitation than
action exploration or imitation for Ω3 and Ω4, compared to the more simple tasks. A
coupling appears between simple tasks and action space exploration on the one hand,
and complex tasks and procedure exploration on the other hand. Moreover, for imita-
tion, SGIM-PB was overall able to correctly identify the most adapted teacher to each
outcome space. Their only suboptimal choice is to use the procedural teacher built for Ω4
to explore Ω3. This mistake can be explained as both outcome spaces have the same task
decomposition (see Figure 2).

Likewise, for the simulation setup, in Figure 11, the histogram of explored task-
strategy combinations confirms that the learner uses mostly autonomous exploration
strategies. It uses mostly action exploration for the simplest outcome spaces (Ω0, Ω1, Ω2),
and procedure exploration for the most complex outcomes (Ω3, Ω4). This shows the
complementarity of action and procedures for exploration in an environment with a
hierarchical set of outcome spaces. We can see for each task subspace, the proportion of
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imitation used. While for Ω0, SGIM-PB uses the strategy AutonomousActions five times
more than ActionTeacher0, the proportion of imitation increases for the complex tasks.
Imitation seems to be required more for complex tasks. For the simplest outcome spaces
(Ω0, Ω1, Ω2), it uses mostly action exploration and procedure exploration for the most
complex ones (Ω3, Ω4). From Figure 11 , we can also confirm that for each task, the teacher
most requested is specialised in the goal task, the only exceptions are ProceduralTeacher3
and ProceduralTeacher4 who are specialised in different complex tasks but that use the
same subtask decomposition, thus demonstrations of ProceduralTeacher3 has effects on
Ω4 and vice versa. The choices shown in the histogram show that SGIM-PB has spotted
the teacher’s domain of expertise.

Let us analyse the evolution of the time each outcome space (Figure 9) and strategy
(Figure 10) is chosen during the learning process of SGIM-PB on the simulated setup. In
Figure 9, its self-assigned curriculum starts by exploring the most simple task Ω0 until
1000 iterations. In Figure 10, we see that this period corresponds mainly to the use of
the strategy Autonomous policies, relying on itself to acquire its body schema. Then
it gradually switches to working on the most complex outcome space Ω3 (the highest
dimension) and marginally more on Ω4 while preferring autonomous procedures and
marginally the teachers for Ω3 and Ω4. In contrast, the strategy ActionTeacher0 decreases,
SGIM-PB does not use action imitation any more. SGIM-PB switches from imitation of
action primitives to procedures, and most of all it turns to the strategies autonomous
policies and autonomous procedures.

For the physical setup, the evolution of outcome spaces (Figure 15) and strategies
(Figure 16) chosen are more difficult to analyse. However, they show the same trend
from iterations 0 to 10,000: the easy outcome spaces Ω0, Ω1, Ω2 are more explored in the
beginning before being neglected after 1000 iterations to explore the most complex outcome
spaces Ω3, Ω5. Imitation is mostly used in the beginning of the learning process, whereas
later in the curriculum, autonomous exploration is preferred. The autonomous exploration
of actions strategy was also less used. However, the curriculum after 10,000 is harder to
analyse : at two instances (around 13,000 and a second time around 17,000 iterations),
SGIM-PB switched to autonomous exploration of actions while exploring simpler outcome
spaces Ω0, Ω1, Ω2. This might mean the learner needs to consolidate its basic knowledge
on the basic tasks before being able to make further progress in the complex tasks.

Figure 15. Evolution of choices of tasks for the SGIM-PB learner during the learning process on the
physical setup.

Figure 16. Evolution of choices of strategies for the SGIM-PB learner during the learning process on
the physical setup.
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5.5. Data Efficiency of Active Learning: Active Imitation Learning vs Batch Transfer

In this section, we explore the possibility to transfer a set of procedures as a batch
at the beginning of the learning process, as opposed to active requests from the learner
throughout the learning process. We consider a learner and a teacher with different
embodiments working on the same tasks. While transfer of knowledge of actions can not
be reused straightforward, how can the knowledge of procedures be exploited?

In our example, we consider new learners trying to explore the interactive table using
the left arm of Yumi, while benefitting from the knowledge acquired from a right arm
Yumi. We call this simulation setup the left-arm setup. We extracted a dataset D3 composed
of the procedures and their corresponding reached outcomes ((ωi, ωj), ωr)) taken from
the experience memory of a SGIM-PB learner that has trained on the right arm for 25,000
iterations (taken from the runs of SGIM-PB on the simulated setup). To analyse the benefits
of batch transfer before learning, we run in the simulated setup (see Section 4.1), two
variants of SGIM-PB 10 times, with for each 10,000 iterations:

• Left-Yumi-SGIM-PB: the classical SGIM-PB learner using its left arm, using from the
exact same strategies as on the simulated setup, without any procedure transferred;

• Left-Yumi-SGIM-TL: a modified SGIM-PB learner, benefiting from the strategies used
on the simulated setup, and which benefits from the dataset D3 as a Transferred
Lump at the initialisation phase: Memo ← {((ωi, ωj), ωr)} at the beginning their
learning process. No actions are transferred, and the transferred data are only used for
computing local exploration of the procedural space, so they don’t impact the interest
model nor the test evaluations reported in the next section.

All procedural teachers propose the same procedures as in Section 4.1 for the right-
handed SGIM-PB learner. The ActionTeacher0, proposing action demonstrations for reach-
ing Ω0 outcomes was changed to left-handed demonstrations.

5.5.1. Evaluation Performance

Figure 17 shows the global evaluation of Left-Yumi-SGIM-PB and Left-Yumi-SGIM-TL.
We can see that, even though the learning process seems quicker before 500 iterations for
the Left-Yumi-SGIM-TL learner, both learners quickly learn at the same rate as shown by
their overlapping evaluation graphs. If we look at Figure 18 which shows this evaluation
broken down for each task, we see the same phenomenon for Ω2, Ω3 and Ω4. This seems
to indicate, that active imitation using the small demonstration datasets are enough for
Left-Yumi-SGIM-PB to tackle this setup, while the huge dataset of transferred procedures
don’t give Left-Yumi-SGIM-TL an edge other than a slightly better performance for the
complex tasks at the initial phase.

Figure 17. Evaluation of all algorithms throughout learning process for the transfer learning setup,
final standard deviations are given in the legend.

5.5.2. Procedures Learned

To analyse what task hierarchy both learners have discovered at the end of their
learning process, we plotted Figure 19. We can see that no learner is clearly better at
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discovering the setup task hierarchy (see Figure 2): Left-Yumi-SGIM-PB decomposes more
often tasks Ω1 as (Ω0, Ω0), but slightly less often Ω3 or Ω4 as (Ω1, Ω2). For Ω3, Left-Yumi-
SGIM-PB also uses another procedure: (Ω2, Ω1) which is also valid. To position both
objects, the robot can start by either object 1 or object 2. However, if we take into account
the task hierarchy learned by the transfer dataset which is fed to Left-Yumi-SGIM-TL before
its learning process, we can see that Left-Yumi-SGIM-TL has learned almost exactly the
same task hierarchy than the transfer dataset, which indicates its influence owing to the
large number of procedures transferred: procedures from 25,000 iterations were transferred
compared to the new procedures explored by Left-Yumi-SGIM-TL during only 10,000
iterations. Hence Left-Yumi-SGIM-TL has the same defects and qualities than the transfer
dataset in terms of the task hierarchy discovered. For instance, Left-Yumi-SGIM-TL uses
the inefficient procedure (Ω1, Ω2) to reach Ω1 more often than Left-Yumi-SGIM-PB. It
wasn’t able to overstep the defects of the transfer dataset.

Figure 18. Task evaluation of all algorithms throughout learning process for transfer learning setup.

5.5.3. Procedures Used during Learning

If we look at the procedures that were actually tried out by the learner during its
learning process for reaching each goal outcome (see Figure 20), we can see first that
for all versions of the algorithm and all types of tasks except Ω1, the procedures most
used during the learning phase correspond to the ground truth. Thus intrinsic motivation
has oriented the exploration towards the relevant task decompositions. Besides, for all
types of task, Left-Yumi-SGIM-TL tends to explore more the procedures in (Ω1, Ω2) than
Left-Yumi-SGIM-PB. This difference can also be explained by the predominance of this
procedure in the transfer dataset D3. Both of them also tried a lot of procedures from the
Ω2

0 procedural space. It confirms that Left-Yumi-SGIM-TL was not able to filter out the
defects of its transfer dataset in terms of the task hierarchy provided.

5.5.4. Strategical Choices

Analysing the learning process (Figures 21–24) of both learners, we can see that they
are very similar. Both learners start by performing a lot of imitation of the available
teachers coupled with an exploration of all outcome types, until 1500 and 2000 iterations
for respectively Left-Yumi-SGIM-TL and Left-Yumi-SGIM-PB. This difference in timing
can be caused by the transferred dataset D3, but is not very significant. Then they focus
more on the autonomous exploration of the action space to reach the Ω0 outcome subspace
before gradually working on more complex outcome spaces while performing more an
more autonomous exploration of the procedural space. However, the Left-Yumi-SGIM-
TL learner seems to abandon its initial imitation phase faster than Left-Yumi-SGIM-PB
(about 1000 iterations faster), and also quickly starts working on the more complex Ω3
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outcome space with the strategy autonomous exploration on procedures. This initial faster
maturation seems perhaps too fast as Left-Yumi-SGIM-TL reverts to working on Ω0 with
autonomous actions afterwards : we see two other peaks of this choice of combination at
5500 iterations and 9500 iterations. On the contrary, Left-Yumi-SGIM-PB seems to converge
more steadily towards its final learning phase.
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Figure 19. Task hierarchy discovered by the
learners on left-arm setup: this represents for
outcome spaces Ω1, Ω3 and Ω4 the percentage
of time each procedural space is chosen
during test to reach goals of the testbench
by Left-Yumi-SGIM-PB (1st row), the transfer
dataset (2nd row) and the Left-Yumi-SGIM-TL
learner (3rd row). The ground truth hierarchy is
indicated by a red square.

Figure 20. Procedures used during the
exploration phase on left-arm setup: this
shows for outcome spaces Ω1, Ω3 and Ω4 the
percentage of times each procedural space was
chosen during learning by Left-Yumi-SGIM-PB
(1st row), and the Left-Yumi-SGIM-TL learner
(3rd row), procedures discovered by the transfer
dataset D3 are also reminded (2nd row). The
ground truth hierarchy is indicated by a red
square.
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Figure 19. Task hierarchy discovered by the learners on left-arm setup: this represents for outcome
spaces Ω1, Ω3 and Ω4 the percentage of time each procedural space is chosen during test to reach
goals of the testbench by Left-Yumi-SGIM-PB (1st row), the transfer dataset (2nd row) and the
Left-Yumi-SGIM-TL learner (3rd row). The ground truth hierarchy is indicated by a red square.
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learner (3rd row). The ground truth hierarchy is
indicated by a red square.
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(1st row), and the Left-Yumi-SGIM-TL learner
(3rd row), procedures discovered by the transfer
dataset D3 are also reminded (2nd row). The
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Figure 20. Procedures used during the exploration phase on left-arm setup: this shows for outcome
spaces Ω1, Ω3 and Ω4 the percentage of times each procedural space was chosen during learning by
Left-Yumi-SGIM-PB (1st row), and the Left-Yumi-SGIM-TL learner (3rd row), procedures discovered
by the transfer dataset D3 are also reminded (2nd row). The ground truth hierarchy is indicated by a
red square.

Figure 21. Evolution of choices of strategies for the Left-Yumi-SGIM-PB learner during the learning
process on left-arm setup.
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Figure 22. Evolution of choices of tasks for the Left-Yumi-SGIM-PB learner during the learning
process on left-arm setup.

Figure 23. Evolution of choices of strategies for the Left-Yumi-SGIM-TL learner during the learning
process on left-arm setup.

Figure 24. Evolution of choices of tasks for the Left-Yumi-SGIM-TL learner during the learning
process on left-arm setup.

If we look at the choices of strategy and goal outcomes for the whole learning process
(see Figures 25 and 26), we can see that this difference in the learning processes is visible in
the number of times each of the two main combinations of task and goal outcome space
was chosen: Left-Yumi-SGIM-TL favors more working autonomously on procedures for
exploring Ω3 whereas Left-Yumi-SGIM-PB worked more on autonomous exploration of
actions for Ω0.
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Figure 25. Choices of strategy and goal outcome for the Left-Yumi-SGIM-PB learner on left-arm setup.

Figure 26. Choices of strategy and goal outcome for the Left-Yumi-SGIM-TL learner on the left-arm setup.

These results seem to indicate that if a transfer of knowledge about difficult tasks takes
place before easy tasks are learned, it can disturb the learning curriculum by changing the
learner’s focus on difficult tasks. The learner needs to realise that the gap in knowledge is
too high, and give up these difficult tasks, to re-focus on learning the easy subtasks. Thus,
demonstrations given throughout the learning process and adapted to the development
of the learner seem more beneficial than a batch of data given at a single point of time,
despite a larger amount of data. These results show that procedure demonstrations can
be effective for robots of different embodiments to learn complex tasks; and active
requests of few procedure demonstrations are effective to learn task hierarchy. They
were not significantly improved by more data added at initialisation in terms of error,
exploration strategy or autonomous curriculum learning.

6. Discussion

The experimental results highlight the following properties of SGIM-PB:

• procedures representation and task composition become necessary to reach tasks of
higher hierarchy. It is not a simple bootstrapping effect.

• transfer of knowledge of procedures is efficient for cross-learner transfer of knowledge
even when they have different embodiments.
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• active imitation learning of procedures is more advantageous than imitation from a
dataset provided from the initialization phase.

The performance of SGIM-PB stems from its tackling several aspects of transfer of
knowledge, and relies on our proposed representation of compound actions that allows
hierarchical reinforcement learning.

6.1. A Goal-Oriented Representation of Actions

Our representation of actions allows our learning algorithm to adapt the complexity
of its actions to the complexity of the task at hand, whereas other approaches using via
points [49], or parametrised skills [50], had to bound the complexity of their actions. Other
approaches like [51] also use a temporally abstract representation of actions: options.
However options are often used in discrete states settings to reach specific states such as
bottlenecks, and are generally learned beforehand. On the contrary, our dual representation
of skills as action primitive sequences and procedures allow an online learning of an
unlimited number of complex behaviours. Our exploitation of the learned action primitive
sequence is simplistic and needs improvement though.

Our work proposes a representation of the relationship between tasks and their
complexities, by the procedural framework. Comparatively, [25] proposed for tackling a
hierarchical multi-task setting, to learn action primitives and use planning to recursively
chain skills. However, that approach does not build a representation of a sequence of action
primitives, and planning grows slower as the environment is explored. A conjoint use of
planning techniques with an unrestrained exploration of the procedural space could be an
interesting prospect and extension of our work.

In this article, we tackled the learning of complex control tasks using sequences of
actions of unbounded length. Our main contribution is a dual representation of com-
pound actions in both action and outcome spaces. We showed its impact on autonomous
exploration but also on imitation learning: SGIM-PB learns the most complex tasks by
autonomous procedural space exploration, and can benefit more from procedural demon-
strations for complex tasks and from motor demonstrations for simple tasks, confirming
the results on a more simple setup in [35]. Our work demonstrates the gains that can be
achieved by requesting just a small amount of demonstration data with the right type of
information with respect to the complexity of the tasks. Our work should be improved by
a better exploitation algorithm of the low-level control model and can be speeded up by
adding planning.

6.2. Transfers of Knowledge

We have tested our algorithm in the classical setups of transfer of knowledge : cross-
task transfer, cross-learner transfer and by imitation learning. We have shown that
SGIM-PB can autonomously determine the main questions of Transfer Learning as theo-
rised in [5]:

• What information to transfer? For compositional tasks, a demonstration of task
decomposition is more useful than a demonstration of an action, as it helps bootstrap
cross-task transfer of knowledge. Our case study shows a clear advantage of procedure
demonstrations and procedure exploration. On the contrary, for simple tasks, action
demonstrations and action space exploration show more advantages. Furthermore,
for cross-learner transfer, especially when the learners have different embodiments,
this case study indicates that demonstrations of procedures are still helpful, whereas
demonstrations of actions are no longer relevant.

• How to transfer? We showed that decomposition of a hierarchical task, through
procedure exploration and imitation, is more efficient than learning directly action
parameters, i.e., interpolation of action parameters. This confirms the results found in
a more simple setup in [35].

• When to transfer? Our last setup shows that an active imitation learner asking adapted
demonstrations, as its competence increases, performs almost better than when it is
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given a significantly larger batch of data at initialisation time. More generally for a
less data-hungry transfer learning algorithm, the transferred dataset should be given
to the learner in a timely manner so that the information is adapted to the current level
of the learner, i.e., its zone of proximal development [52]. This advantage has already
been shown by an active and strategic learner—SGIM-IM [53], a simpler versions of
SGIM-PB—which had better performance than passive learners for multi-task learning
using action primitives.

• Which source of information? Our strategical learner chooses for each task the most
efficient strategy between self-exploration and imitation. Most of all, it could under-
stand the domain of expertise of the different teachers and choose the most appropriate
expert to imitate. The results of this case study confirms the results found in [35] in a
simpler setup and in [38] for learning action primitives.

7. Conclusions

We showed that our industrial robot could learn sequences of motor actions of unre-
strained size to achieve a field of hierarchically organized outcomes. To learn to control
in continuous high-dimensional spaces of outcomes through a continuous infinite dimen-
sionality space of actions, we combined: goal-oriented exploration to enable the learner to
organize its learning process in a multi-task learning setting, procedures as a task-oriented
representation to build increasingly more complex sequences of actions, active imitation
strategies to select the most appropriate information and source of information, and in-
trinsic motivation as a heuristic to drive the robot’s curriculum learning process. All four
aspects are combined inside a curriculum learner called SGIM-PB. This algorithm showed
the following characteristics through this study:

• Hierarchical RL: it learns online task decomposition on 4 levels of hierarchy using the
procedural framework; and it exploits the task decomposition to match the complexity
of the sequences of action primitives to the task;

• Curriculum learning: it autonomously switches from simple to complex tasks, and
from exploration of actions for simple tasks to exploration of procedures for the most
complex tasks;

• Imitation learning: it empirically infers which kind of information is useful for each
kind of task and requests just a small amount of demonstrations with the right type of
information by choosing between procedural and action teachers;

• Transfer of knowledge: it automatically decides what information, how, when to
transfer and which source of information for cross-task and cross-learner transfer
learning.

Thus, our work proposes an active imitation learning algorithm based on intrin-
sic motivation that uses empirical measures of competence progress to choose at the
same time what target task to focus on, which source tasks to reuse and how to transfer
knowledge about task decomposition. Our contributions, grounded in the field of cogni-
tive robotics, are : a new representation of complex actions enabling the exploitation of
task decomposition and the proposition for tutors of supplying information on the task
hierarchy to learn compound tasks.

This work should be improved by a better exploitation algorithm of the low-level
control model and can be speeded up by adding planning methods.
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