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Abstract—Biomechanical features describing movements and
poses of athletes have been proposed by experts to help study
athletic performances, but the traditional way of measuring
those features are high-cost, time-consuming and intrusive. In
this paper, we propose a deep learning-based method that can
estimate athletic biomechanical features from typical broad-
cast competition videos, i.e. single-camera-shot moving videos.
This method involves state-of-the-art human pose estimation
models and a biomechanical analysis to reconstruct the tra-
jectory. We then leverage the reconstructed trajectory to es-
timate the target features. To evaluate the method, we gath-
ered a dataset from the long jump World Championships
of 2017 and 2018, comprising 22 expert-proposed long-jump
biomechanical features about the trajectories, taking-off and
landing characteristics. Our experiments show the effectiveness
of the pipeline in automatically estimating the biomechani-
cal features. By analysing the results, we identify the chal-
lenges towards high-accuracy athletes’ feature estimations from
monocular broadcast competition videos. Code is available at
https://github.com/QGAN2019/Long Jump Feature Estimation.

Index Terms—human pose estimation, athletes’ biomechanical
feature extraction, long jump

I. INTRODUCTION

Athlete techniques analysis can help evaluate athletes’
movements and provide guidance for training sessions [1],
[2]. To better quantify these techniques, experts have proposed
biomechanical features as metrics [3]–[9], which constitute
physical quantities of athletes’ poses and trajectories. How-
ever, the collection of these features requires sensor systems
that can be costly and time-consuming. Automating this pro-
cess is desirable to make it more cost-effective and efficient,
thus applicable in a wider range of scenarios. A possible
solution to this problem is to leverage modern artificial in-
telligence models to estimating human poses from videos,
and recovering athletes’ 3D trajectories from the estimated
poses. The biomechanical features can then be calculated from
these 3D trajectories. While some studies have successfully
extracted basic features from estimated 2D athlete poses in
videos [1], [2], to the best of our knowledge, there has been no

research dedicated to extracting comprehensive features from
3D trajectories reconstructed from videos, which could offer a
more nuanced understanding of athlete movements. To bridge
this research gap, we present a method to estimate long-jump-
related biomechanical features using world championships
competition videos, with the long jump as a primary example.
Specifically, we focus on monocular (i.e. single-camera-shot),
dynamic (i.e. moving-camera-shot), low-frame-rate (i.e. 25
frames per second) videos containing a single athlete in
each frame. The single-athlete condition mitigates complexity
arising from human pose occlusion, while the other settings are
prevalent in online competition videos. The proposed method
follows a pipeline that takes advantage of off-the-shelf deep
neural network models for athlete pose estimation and utilizes
biomechanical analysis to estimate pose global positions. To
evaluate the performance of the method, we collected a dataset
consisting of recordings of 26 jumps by 22 athletes from online
videos [10]–[13], along with ground truths of 22 long-jump-
related biomechanical features provided by online reports [3]–
[6]. We conducted experiments under different settings to
explore the influence of different components in the pipeline.
The contributions of this work are summarized as follows:

• We propose a method that can automatically estimate
athletes’ biomechanical features from online competition
videos which are monocular, dynamic and low frame rate.

• We introduce a biomenchanical analysis method that can
place 3D estimated athlete poses to their global position,
in order to reconstruct athletes’ 3D trajectories.

• We perform extensive experiments to analyze the in-
fluence of different components on feature estimation
performance. The results provide guidance toward higher
accuracy estimation of athletes’ biomechanical features.

The organization of the paper is summarized as follows:
Section II briefly reviews related research works on the topics
of human pose estimation and athletes’ biomechanical feature
estimation. Section III introduces the proposed method to
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estimate athletes’ biomechanical features. Section IV describes
the dataset that we collect to evaluate the proposed method.
Section V introduces the experiments and presents both the
quantitative and qualitative, together with discussions on the
influences of each component in the proposed method. Finally,
section VI concludes the paper.

II. RELATED WORKS

Human pose estimation: In the realm of human pose
estimation from monocular videos, a key focus of research
involves the accurate inference of single-person 3D poses.
A general way to achieve this involves first estimating 2D
poses from frames and then estimating 3D poses from the
estimated 2D poses. This methodology capitalizes on recent
advancements in 2D human pose estimation models, but lifting
3D poses from 2D representations still presents a significant
challenge, primarily due to the loss of depth information.
Prior studies have addressed this challenge by incorporating
information from human body constraints (kinematics) [14],
[15], temporal dynamics [16], [17], physical laws [18], [19],
or their combinations [20]. In this context, we adopt YOLOv6
[21], ViTPose [22] and MHFormer [17] for, respectively,
object detection, 2D human pose estimation and 3D human
pose lifting, due to their proven state-of-the-art performance
and superior efficacy demonstrated on our dataset.

Biomechanical feature estimation: Biomechanical features
have been used to analyze athlete techniques in many works
[7]–[9], but have been collected manually. So far, not much
work has been done to automate the estimation process.
Most studies relevant to this topic focus on estimating athlete
poses instead of features, which mainly transfers deep neural
network models to sports poses [23]–[25]. Only a handful
studies have investigated the feature estimation problem. Wang
et al. [1] have applied pose estimation to skiing videos to
help evaluate the movements of skaters by estimating the 2D
poses of athletes and their boards. Van der Meijden [2] used
OpenPose [26] to estimate 2D poses to extract four features
from relatively high frame rate (60 Frame/s) monocular sprint
videos. However, to our best knowledge, no work has yet
attempted to estimate the biomechanical features that requires
the reconstruction of athletes’ global 3D poses (or trajectories)
from broadcast competition videos. In this work, we take the
long jump as an example to study the feasibility and challenges
of estimating athletes’ biomechanical features with modern
human pose estimation models.

III. FEATURE EXTRACTION PIPELINE

To calculate the biomechanical features of an athlete from
his/her competition video, we proposed a method consisting
of the pipeline shown in Fig. 1. The pipeline takes a frame
sequence from competition videos as input, and extracts target
features through three steps: 1) Human detection and pose
estimation, 2) Trajectory reconstruction, 3) Biomechanical
feature calculation. In the first step, YOLOv6 [21] and ViT-
Pose [22] are used to perform athlete detection and 2D pose
estimation, respectively. The estimated poses are corrected

by the annotation tool. Then 3D poses are estimated using
MHFormer [17]. In the second step, the estimated 3D poses
are placed to their global positions according to biomechanical
analysis. In the third step, the reconstructed trajectory from
the previous step is used to calculate the target features of the
athlete.

A. Human pose estimation

The athletes are firstly detected by YOLOv6 [21], with
the bounding boxes of class ’person’ selected. The bounding
box of the largest area in each frame is regarded as the
athlete’s area, as the athletes are always the objects focused
on in broadcast competition videos. Then, the 2D poses of the
athletes are estimated by ViTPose [22]. The Coco-whole body
keypoints are estimated and transformed into Human3.6M
[27] format (including keypoints for big toes). Despite the
high performance of the state-of-the-art models, some highly-
blurred or self-occluded frames still cause considerable detec-
tion errors, e.g. the swap of left and right legs, the erroneously
estimated arms when occluded by athlete trunk and mixture
between a ponytail and an arm, etc. We have thus manually
corrected those errors in estimated 2D key points using an
annotation tool developed by ourselves. With the tool, one
can visualize the 2D key points in image frames and drag key
points to correct them. With the new annotation, we retrain
the 2D human pose estimation model.

The 3D poses are estimated from the corrected 2D poses
by MHFormer [17]. To include the keypoints for big toes, we
re-trained the MHFormer model with Human3.6M [27].

B. Athlete trajectory reconstruction

Premises: The above estimated 3D poses are in relative
position, which cannot be directly used to extract features
related to athlete’s displacements. To place the 3D poses back
to their global positions, we propose a method by introducing
a biomechanical analysis. This analysis is based on two
premises: 1) The athletes run on hard horizontal ground; 2)
There is no foot-sliding when the athletes run. As the two
premises are valid for the process before landing in long
jump, we focus mainly on the process before (and including)
athletes’ feet touching the sand pit.

Biomechanical analysis: We propose to split the long jump
process periodically into two phases in order to apply biome-
chanical analysis (see Fig. 2). Phase I is the process when one
of the athlete’s feet continuously contacts the ground, while
Phase II is the process between two steps when the athlete’s
whole body is in the air. During Phase I, as the toe key point
continuously contacts the ground without sliding, we can align
the 3D poses during Phase I by translation according to the toe
key point. During Phase II, because the body of the athlete can
be approximated as being only affected by gravity, neglecting
other effects like winds, the trajectory of the center of mass
of the athlete follows the laws of free fall motion. Thus, if
the velocity of the athlete’s center of mass at the beginning
of Phase II is known, the following positions of the athlete’s
3D poses can be derived by aligning the center of mass to



Fig. 1. Overview of the proposed pipeline. With input frames of athletes, 2D poses and 3D poses are estimates subsequently. Then the 3D trajectory is
recovered from 3D poses through biomechanical analysis. Finally, different features are calculated from the trajectory.

its trajectory. Noticing that the velocity at the beginning of
Phase II is the velocity at the end of Phase I, the subsequent
positions, starting from a specific Phase I, can be alternatively
calculated according to the above two phases.

Fig. 2. Phase split. Phase I: When at least one foot touches the ground. Phase
II: When both feet are in the air

Phase splitting: We split the athlete’s movement into phases
by estimating whether their foot contacts the ground. The
foot-ground contacting label is obtained by aligning the 2D
positions of the key points of left and right toes and setting a
threshold to determine whether one foot touches the ground.
However, as the above biomechanical analysis is sensitive to
errors in phase splitting, we manually corrected the estimated
foot-ground contact label using the interface shown in Fig. 3.

Fig. 3. The annotation tool. The above four buttons are used to correct 2D
poses. The below four buttons are used to correct foot-ground contact labels.
The keypoints of the 2D pose displayed in the frame can be dragged by cursor
to correct the positions.

Body mass center estimation: To calculate the center of
mass of a human body, we first calculate the center of mass of

different segments in the 3D pose skeleton, and approximate
the center of mass of the whole body according to the human
body weight distribution. Referring to the human skeleton
definition of Human3.6M [27], the center of mass of ’upper
arm’, ’forearm’, ’thigh’, ’shank’ and ’foot’ are approximated
by the mid-point of the corresponding links; the center of
mass of head is approximated by the mid-point between key
point ’Head’ and ’Thorax’; the center of mass of torso is
approximated by the key point ’Spine’; and the center of mass
of each hand is approximated by the key point of related
’Wrist’. Finally, the center of mass of the whole body is
estimated by the weighted sum of the above centers, with the
values of the weights provided in [28]. In order to map the 3D
pose to real athlete body size, we took the official height of
each athlete as a reference, while the height of the 3D skeleton
is approximated by the sum of a half foot length, calf, thigh,
torso and the distance between ’Thorax’ and ’Head’.

IV. DATASETS

We collected a dataset consisting of clips of long jumps
with ground truths of features. The jumps are from the IAAF
World Indoor Championships 2018 Long Jump Men & Women
and the IAAF World Championships London 2017 Long Jump
Men & Women. We referred to the biomechanical reports
of IAAF [3]–[6] for ground truth of the 22 biomechanical
features. The reports provided biomechanical features of 52
jumps of 40 athletes. Among them, there are 12 men and 12
women in the report of 2017’s competition, and 15 men and
13 women in that of 2018’s competition. Features are provided
for one jump for each athlete in each competition. The videos
are taken from the IAAF official channel of Youtube [10]–[13].
Because the competition videos do not record all the jumps,
we only obtained 26 jumps of 22 athletes (11 men and 11
women) with biomechanical features’ ground truth.

There are in total 43 features provided for each jump. Ex-
cluding irrelevant features (e.g. personal best), a not quantifi-
able feature (center of mass trajectory), and contact/flight/step
time (because the frame rate is 25 (Frame/s), which is too low
to estimate these features), only 22 features remain, which
are explained in Table I (for more details see [3]–[6]). In this
work, we divide the 22 features into 3 groups:

• The trajectory features: The features related to taking-
off velocity and jumping distance. These features are
directly related to the trajectories of long jump athletes
from taking off to landing. They are thus highly correlated
with the performance of long jump. They reveal the
dynamics of the center of mass of an athlete’s body



around and just before the moment of taking off. The
accuracy of estimation of these features depends on
both the pose estimation models and the biomechanical
analysis.

• The taking-off pose features: The features related to
athletes’ poses when they take off from the board. These
features reveal the information of athlete poses around
the taking off moment. The performance of estimating
them is only related to pose estimation performance.

• The landing pose features: The features related to
athletes’ poses when they land into the sand pit. Although
the dynamics of the center of mass of an athlete are
determined after taking off, a better landing pose can help
avoid extra distance loss due to unnecessary body parts
contacts with the sand pit. The estimation of these poses
relies on the performance of pose estimation models, and
of rare poses in particular. Notice that the ground truths of
the landing pose features are not provided in the reports
of the IAAF World Championships London 2017 Long
Jump Men & Women [3], [5].

TABLE I
EXPLANATIONS TO THE BIOMECHANICAL FEATURES [3]–[6]

Features Explanations
EF dist Effective distance
LS len Last step length
LS vel Mean velocity during last step
TO vel H Horizontal velocity at take-off
TO vel V Vertical velocity at take-off
TO vel loss H Loss in horizontal velocity during foot-on-

board
TO vel Magnitude of the velocity at take-off
TO ang Angle of the velocity at take-off
CM lower Center of mass height difference between

the lowest and the beginning during foot-
on-board

TD body inclin Body inclination angle at touchdown
TO body inclin Body inclination angle at take-off
TD trunk inclin Trunk inclination at touchdown
TO trunk inclin Trunk inclination at take-off
TO thigh ang Leading thigh angle at take-off
TO thigh ang vel Mean leading thigh angular velocity during

foot-on-board
TD knee ang Knee angle at touchdown
TO knee ang min Minimum knee angle during foot-on-board
TO knee ang range Knee angle range during foot-on-board
LD knee ang Knee angle when landing
LD trunk ang Trunk angle when landing
LD dist Distance between center of mass and the

first landing point

V. RESULTS

We evaluated the performance of the pipeline in Fig. 1 on
the estimation of features introduced in the previous section.
The mean absolute error (MAE) was used as the metric to
evaluate the estimation accuracy of each feature. To simplify
the discussion, we examined the performance on the 3 groups
of features separately. Furthermore, we designed four settings
to explore the influence of different elements of the pipeline
and thus to address the challenges in applying computer vision

models to biomechanical feature estimation in sports (see II),
which are:

• Setting 1 (S1): Following the pipeline in Fig. 1, firstly,
the athletes in input frames were detected by YOLOv6-
Large [21]. The largest bounding box of the ’person’
class of each frame was selected as the one for the ath-
lete. Then, ViTPose-Large [22] was used to perform 2D
human pose estimation. The foot-ground contacts were
estimated by a signal-processing based method. Both
the 2D human pose and foot-ground contact labels were
corrected with the annotation tool. Then the 3D poses
were estimated using MHFormer [17] with sequence
length set to 351, which we retrained on Human3.6M [27]
to include 2 keypoints for big toes in order to calculate
more accurate features. Afterwards, the trajectory of the
athlete was reconstructed by estimating the global posi-
tions of the 3D poses through our biomechanical analysis.
Finally, we estimated the features from the reconstructed
trajectory.

• Setting 2 (S2): The same process of Setting 1 is fol-
lowed, except that for the 3D poses, we excluded the
keypoints for big toes, which are thus not used in feature
calculation. This is because most of the models for 2D/3D
human pose estimation focus on human skeletons without
toe keypoints [17], [16]. By comparing Setting 2 with
Setting 1, we would like to examine the influence of the
toe keypoints to the estimation of features.

• Setting 3 (S3): The same process of Setting 1 is followed,
except that we retrained MHFormer with sequence length
of 81. According to [17], the performance with length
81 performed worse than with length 351. Thus, by
comparing Setting 3 with Setting 1, we could examine
the influence of 3D lifting models to the final feature
estimation.

• Setting 4 (S4): The same process of Setting 1 is followed,
with the only difference being that the 2D human poses
were not corrected by the annotation tool. By comparing
Setting 4 with Setting 1, we could investigate the effects
of the quality of 2D keypoints.

TABLE II
SUMMARY OF THE FOUR EXPERIMENTAL SETTINGS

Setting Toe keypoints
included?

2D pose
corrected?

MHFormer
sequence length

S1 Y Y 351
S2 N Y 351
S3 Y Y 81
S4 Y N 351

A. The trajectory features

The trajectory features are directly related to the athlete’s
final performance (the distance). The results are summarized
in Table III. Among the four settings, S1 outperforms the
others significantly. Under S1, the pipeline provided the most
accurate estimation of the features dominated by taking off



horizontal velocity, i.e. the effective distance (’EF dist’), the
taking-off horizontal velocity (’TO vel H’) and the taking-off
velocity (’TO vel’). This shows that the pipeline successfully
recovered the horizontal positions of the 3D poses during
taking off. Regarding the loss in horizontal velocity during
foot-on-board (’TO vel loss H’), the error should be within
approximately twice that of ’TO vel H’, since it represents
the difference between two horizontal velocities. On the other
hand, the features closely related to vertical velocity, i.e. the
taking-off vertical velocity (’TO vel V’) and the taking-off
velocity angle (’TO ang’), were poorly estimated. We claim
that the low frame rate is the major cause of this difference.
Due to the fact that the vertical velocity at takeoff undergoes
rapid changes compared to the horizontal velocity at takeoff, a
slight delay in identifying the precise moment of takeoff results
in greater errors when estimating vertical velocities. Moreover,
the last-step length (’LS Len’) is notably impacted by the low
frame rate. This is primarily due to the brevity of the last
steps, typically lasting only 1 or 2 frames, which complicates
the calculation of step length based on the product of velocity
and time. Finally, the center of mass lowering (’CM lower’) is
too small to estimate accurately because it is around the limit
of the accuracy of MHFormer for 3D human pose estimation.

Compared to S1, S2 did not include keypoints of toes. The
decrease in the performance of S2 shows that the length of
foot is big enough to cause significant difference in trajectory
feature estimations. The poor performance of S3 highlights the
importance of a good 3D lifting model. The performance of S4
is between the best (S1) and the others, which indicates that
the toe keypoints and the performance of 3D lifting models
are more important than the quality of 2D poses.

TABLE III
MAE OF ESTIMATING TRAJECTORY FEATURES

Features (Unit) GT
Mean (Std) S1 S2 S3 S4

EF dist (m) 7.64 (0.67) 0.44 1.16 1.70 0.84
LS len (m) 2.13 (0.15) 0.82 1.52 1.17 0.86

LS vel (m/s) 9.35 (0.47) 1.01 2.45 2.99 0.94
TO vel H (m/s) 8.50 (0.56) 0.79 1.82 2.23 1.75
TO vel V (m/s) 3.57 (0.30) 3.10 4.14 4.67 1.97

TO vel loss H (m/s) -1.48 (0.38) 2.00 1.25 2.14 4.15
TO vel (m/s) 9.22 (0.52) 0.82 2.47 2.79 1.66
TO ang (°) 23 (2) 20 29 34 15

CM lower (cm) 3.4 (1.8) 3.7 3.7 2.8 12.4

B. The taking-off pose features

The results on the taking-off pose features are shown in
Table IV. The overall performance of estimating those pose-
angle features was satisfactory, with errors around or below
15° under the best settings (S1 and S2). On the contrary,
the angular-velocity-related features (’TO thigh ang vel’ and
’TO knee ang vel’) had large errors, as they were limited by
the low time resolution.

Comparing the different settings, S1 and S2 had similar
performance because of the exclusion of foot-related factors
in these features. On the contrary, S3 and S4 performed much

worse than S1 and S2 on knee-related features, which indicates
the importance of human pose estimation accuracy to the
estimation of these features.

TABLE IV
MAE OF ESTIMATING TAKING-OFF POSE FEATURES

Features (Unit) GT
Mean (Std) S1 S2 S3 S4

TD body inclin (°) -35 (3) 13 11 5 10
TO body inclin (°) 18 (3) 14 18 8 13
TD trunk inclin (°) -7 (6) 7 7 7 6
TO trunk inclin (°) 0 (5) 11 11 10 10
TO thigh ang (°) -12 (7) 6 6 11 11

TO thigh ang vel (°/s) 588 (80) 216 216 143 273
TD knee ang (°) 167 (4) 21 21 43 27

TO knee ang min (°) 140 (7) 13 13 19 40
TO knee ang range (°) 27 (5) 13 13 26 27
TO knee ang vel (°/s) -492 (94) 208 208 426 530

C. The landing pose features

The landing poses are more different from daily poses
appearing in public dataset [27], [29] than taking-off poses
are. Therefore, estimating these rare poses was more difficult,
which explained that the errors about angular features were
slightly higher than those of taking-off pose features (see
Table V). Nonetheless, the overall absolute errors of these
features were relatively small, which indicates that human pose
estimation performance was still acceptable for landing poses.

TABLE V
MAE OF ESTIMATING LANDING POSE FEATURES

Features (Unit) GT
Mean (Std) S1 S2 S3 S4

LD knee ang (°) 133 (13) 20 20 31 19
LD trunk ang (°) 7 (16) 21 21 19 21

LD dist (m) 0.63 (0.12) 0.10 0.11 0.10 0.10

D. Qualitative results

To qualitatively evaluate the performances of the pipeline
under different settings, we plotted the side-view and bird-view
of one reconstructed trajectory (see Fig. 4). This trajectory
was reconstructed under setting 1 from the video of Juan
Miguel Echevarrı́a [13], which is his best jump in the 2018
competition. From the two views of the reconstructed trajec-
tory, the movement details during the whole jump process are
recognizable, e.g. the adjustment of running step before taking
off, the swing of the arms during flight, etc. Meanwhile, from
the bird-view plot, the reconstructed trajectory is not perfectly
straight, which is caused by the rotation of the camera. This
issue is not considered in the proposed pipeline, because it has
little influence on the target biomechanical features.

VI. CONCLUSIONS

This work proposed a pipeline that applies modern human
pose estimation techniques and biomechanical analysis to
long jump biomechanical features’ estimation. The experi-
mental results revealed that the majority of features were



Fig. 4. The birdview (above) and sideview (below) of reconstructed trajectory.
The trajectory is reconstructed from the monocular competition video of Juan
Miguel Echevarrıa’s best jump in the 2018 competition. The units of the
coordinates are all in meters.

accurately estimated when employing high-quality human
pose estimations, except for fast-changing-rate features which
presented difficulty due to the low time resolution of broadcast
competition videos, suggesting the potential utility of pose
interpolation to enhance time resolution of pose sequences.
Additionally, including toe keypoints could improve the es-
timation of both trajectory-related features and pose-related
features, highlighting the need to adapt and retrain models
lacking toe keypoints. Overall, the proposed method demon-
strates feasibility in automating the feature estimating process
using normal-quality broadcast competition videos, with im-
plications for simplifying athlete feature estimation, enabling
biomechanical-feature-based analysis for daily training, and
facilitating large-scale biomechanical feature analysis of online
competition videos.
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