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Abstract

Human pose capture is essential for sports analysis, en-
abling precise evaluation of athletes’ movements. While
deep learning-based human pose estimation (HPE) mod-
els from RGB videos have achieved impressive perfor-
mance on public datasets, their effectiveness in real-world
sports scenarios is often hindered by motion blur, occlu-
sions, and domain shifts across different pose representa-
tions. Fine-tuning these models can partially alleviate such
challenges but typically requires large-scale annotated data
and still struggles to generalize across diverse sports en-
vironments. To address these limitations, we propose a
2D pose prior-guided refinement approach based on Neural
Distance Fields (NDF). Unlike existing approaches that rely
solely on angular representations of human poses, we intro-
duce a polar coordinate-based representation that explic-
itly incorporates joint connection lengths, enabling a more
accurate correction of erroneous pose estimations. Addi-
tionally, we define a novel non-geodesic distance metric
that separates angular and radial discrepancies, which we
demonstrate is better suited for polar representations than
traditional geodesic distances. To mitigate data scarcity, we
develop a gradient-based batch-projection augmentation
strategy, which synthesizes realistic pose samples through
iterative refinement. Our method is evaluated on a long
Jjump dataset, demonstrating its ability to improve 2D pose
estimation across multiple pose representations, making
it robust across different domains. Experimental results
show that our approach enhances pose plausibility while
requiring only limited training data. Code is available at:
https://github.com/QGAN2019/polar-NDF.
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1. Introduction

Human pose capture plays a vital role in sports analysis,
particularly for the quantitative evaluation of athletic per-
formance [2]. By analyzing pose sequences, the technical
intricacies of an athlete’s movements can be measured and
assessed with high precision [9, 19, 28]. Despite its impor-
tance, accurately capturing human pose in sports scenarios
remains a significant challenge.

Traditionally, capturing human movement requires an-
notating human poses from videos frame-by-frame, which
is time-consuming and costly, or dedicated motion capture
systems requiring athletes to wear sensors, suits, or phys-
ical markers. However, many sports applications demand
fast, real-time feedback and non-intrusive pose acquisition.
Recent advances in computer vision offer a promising al-
ternative through deep neural network (DNN)-based human
pose estimation [3, 7, 23, 27]. Despite achieving human-
level accuracy on public datasets [16], these models often
produce subpar results when applied to real-world sports
videos. This performance gap stems from domain differ-
ences between the curated training datasets and the complex
nature of sports footage. Sports videos commonly exhibit
low frame rates, significant motion blur, dynamic light-
ing conditions, and frequent multi-person occlusions. One
strategy to address these issues is fine-tuning 2D Human
Pose Estimation (HPE) models on domain-specific data.
For instance, Ludwig et al. [17] fine-tuned HRNet [23] us-
ing a self-supervised approach. However, this method is
limited by the diversity of visual contexts in sports videos,
including variations in background, lighting, uniforms, and
camera angles—even within the same sport. Moreover, in-
consistencies in pose representations across models further
complicate result transferability [3, 7, 21]. A more robust
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Figure 1. Overview of the method. We leverage a Neural Distance Field (NDF) network to learn the underlying pose prior manifold from
real human poses. The (a) NDF network learns (b) the zero-level-set manifold (represented as deep blue points and visualized using t-SNE
[25]) of (c) real poses. The system estimates the (d) distance of (e) a fake pose in the embedded space (the yellow point) to the manifold.
By performing several iterations of (f) backpropagation with the parameters of NDF fixed, the input fake pose is corrected, outputing (g) a

corrected pose.

alternative involves post-correcting estimated poses using
motion and structural constraints, such as temporal continu-
ity [29, 30], which has proven effective for correcting limb
joint swaps. However, while temporal smoothing can fix lo-
cal inconsistencies, it is insufficient for correcting broader
detection errors. A more effective approach to improving
HPE results is to integrate prior knowledge of human pose
into a dedicated pose prior model. While recent work on
pose priors has predominantly focused on 3D human poses
[1, 24, 26], modeling 2D pose priors presents unique chal-
lenges. This is primarily because a single 3D pose can be
projected into multiple valid 2D configurations, depending
on the viewing angle or camera perspective. POST [21]
successfully applied a 2D pose prior with Neural Distance
Fields (NDF) [5] for domain adaptation in 2D pose esti-
mation using angular representations, where joint connec-
tion directions are encoded via their cosine and sine values.
However, this angular representation ignores the lengths of
joint connections (i.e., limb lengths), which are critical for
evaluating the plausibility of a pose. A pose that is valid
in terms of joint angles may become physically implausi-
ble if the limb lengths are altered. Therefore, angular 2D
pose priors may face limitations when applied directly to
certain HPE scenarios. Moreover, training an NDF-based
pose prior typically requires large-scale datasets [21, 24].

To enable accurate and robust estimation of sports poses
with limited training data, we propose a 2D pose prior-
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guided refinement method. Our approach extends prior
work on neural distance field (NDF)-based pose priors
[21, 24], which model the assumption that plausible hu-
man poses reside on a zero-level manifold, meaning all
valid poses have zero distance to the manifold in the em-
bedded space. In contrast, implausible poses lie outside this
manifold, resulting in positive distances that reflect their de-
viation from physically realistic configurations. To enable
efficient correction of erroneous estimations, we introduce
a novel pose representation and an accompanying distance
metric. Unlike POST [21], our method employs a polar
coordinate-based pose representation that explicitly incor-
porates joint connection lengths, enabling the pose prior
to more effectively refine 2D estimations. In conjunction
with this representation, we propose a non-geodesic dis-
tance metric that separately captures angular and radial dis-
crepancies. Leveraging this metric and representation, we
further propose a gradient-based pose augmentation strat-
egy that allows the NDF model to be trained with lim-
ited data. By backpropagating through arbitrary batches of
poses, our method generates realistic synthetic samples that
improve training efficiency. We validate our approach on a
long jump dataset introduced by Gan et al. [9]. The contri-
butions of this work include:

* We propose a polar coordinate-based pose representation
and a corresponding distance metric for NDF-based 2D
human pose priors, along with a novel training scheme.



This formulation enables the pose prior to refine both an-
gular and radial errors in 2D pose estimations.

We introduce a gradient-based data augmentation method
that synthesizes new pose samples during training. This
strategy allows the 2D NDF prior to be effectively learned
from only a few video clips.

We experimentally demonstrate that the learned 2D pose
prior improves erroneous pose estimations across multi-
ple 2D pose representations, enhancing robustness across
different pose domains.

2. Related works

2.1. Human pose priors

Recent studies on human pose priors generally fall into
two main categories. The first category involves Varia-
tional Autoencoder (VAE)-based approaches. For exam-
ple, VPose [20] employs a variational prior to model hu-
man body poses, while HuMoR [22] utilizes a conditional
VAE to capture both temporal dynamics and body shape.
The second category leverages neural fields to represent hu-
man pose priors. Pose-NDF [24] models 3D human poses
using a Neural Distance Field (NDF) [5], while H-NeRF
[26] learns 3D pose priors using Neural Radiance Fields
(NeRF) [18]. However, most existing methods focus on
modeling 3D pose priors. In contrast, learning priors for
2D poses presents significantly greater challenges, as a sin-
gle 3D human pose can project to many different 2D con-
figurations depending on the camera viewpoint. Moreover,
unlike 3D poses where joint connection lengths are fixed,
2D joint lengths vary continuously from zero to their full
projected length, introducing additional variability. To the
best of our knowledge, the only existing work that models
2D human pose priors is POST [21], which employs a NDF.
Their method represents 2D human poses solely through
the orientations of joint connections, neglecting connection
lengths. This omission is potentially problematic, as joint
length is a critical factor in biomechanical plausibility, mod-
ifying connection lengths while preserving orientations can
result in implausible poses. Furthermore, NDF-based priors
typically require large-scale datasets for training [21, 24],
limiting their applicability in data-scarce scenarios. Our
approach adopts a polar coordinate-based representation to
learn 2D pose priors using NDF, enabling the model to cor-
rect errors in both joint connection orientations and lengths.
Additionally, we introduce a gradient projection-based data
augmentation strategy that facilitates effective NDF learn-
ing even with limited training data.

2.2. Sports pose estimation

Applying HPE models directly to sports videos often yields
suboptimal results due to the domain gap between every-
day human poses and those specific to sports, as well as the
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Figure 2. The 2D human pose representation used in this work
is based on polar coordinates and consists of 15 joint connection
vectors. Each vector is encoded by the cosine and sine of its orien-
tation (, along with its length (see the example of the 'RForearm’
in the figure).

degraded video quality caused by motion blur and occlu-
sions. Two main approaches have been proposed to miti-
gate these issues. The first is model fine-tuning. To address
the challenge of limited annotated data, Ludwig et al. [17]
introduced two self-supervised learning schemes to enhance
pose estimation performance, which were evaluated on long
jump sequences. The second approach involves correcting
estimated poses. Fastovets et al. [8] proposed an interac-
tive, model-based generative framework for pose estimation
in broadcast sports footage. Zecha et al. [29, 30] refined
swimming pose estimates using temporal consistency. Dit-
takavi et al. [6] introduced an explainable pose correction
system based on an angle-likelihood mechanism, applied to
yoga pose analysis. In our work, we learn a 2D pose prior
and address the data scarcity problem through a specialized
gradient-based data augmentation strategy.

3. Methodology

Our objective is to learn a 2D pose prior to correct erroneous
pose estimations from sports videos (mostly broadcast com-
petition videos) with a small amount of data. To achieve this
goal, we propose a 2D polar coordinate pose NDF prior and
a gradient-based data augmentation method. In this section,
we explain the details of the model and algorithm, as well
as the training details.

3.1. Polar-coordinate representation NDF

In this work, we consider the skeleton representation of 2D
human poses. As shown in Figure 2, we represent a 2D pose
skeleton with J (J = 15) vectors, while each vector v; is
represented by the cosine and sine values of its orientation

angle (951) and 01(2)) and its length (r;). Thus, the pose



data could be represented as X = {x = (vy,...,v5)|v;
(017,08, r) € B2, [|(0), 0)]| = 1vi € [J]}.

The neural distance field for 2D poses is the same as [24],
whichis f*¥ . x - Y € R>o. The neural distance field
™% is modeled by a neural network in encoder-decoder
structure [ .= gde¢ o g°". The encoder ¢°™¢ : X —
Z € R7'L is a hierarchical structured neural network [1],
where L is a hyperparameter and J - L is the dimension of
the embedded feature space. The decoder g%¢¢ : Z — ) is
a simple MLP as in [24].

Training of ¥ is regularized by L2 loss of distance
predictions. For a training data D = {(z,d)?|i € [N]}
which consists of real pose samples (z4,d)(") and fake
pose samples (& s, d)(i) (generated through the process de-
scribed in 3.2), the loss term for distance prediction is:

Ereal = Z(wghd)eD ||fndf(mgt) - d||2a

ﬁfake = Z(wfk,d)el) ||fndf($fk) - dH2

In addition, we add a loss term to regularize the gradient of
™% on real poses as 0 to ensure the NDF model converges
better to real poses (represented as @ g ):

>

(xg¢,d)€D

(D

IV 14 (@g0)]|2. )

Egrad =

The total loss term is sum of Equation | and Equation 2:

ﬁtotal = ‘Creal + £fake + Egrad (3)

3.2. Fake pose generation

To learn an NDF model, it is necessary to construct a dataset
consisting of both real and fake poses, i.e. both samples on
and outside the manifold. For real poses, it is straightfor-
ward to have zero distance because they are on the mani-
fold. To augment the data, we flipped and interpolated the
real poses. We then generate fake poses x s, from erroneous
estimates Z4; from HPE models [7, 23, 27] and the corre-
sponding ground truth pose x4;. First, we gather all detec-
tion errors into £ = {e(¥) = igt) - :c(g?\i € [Ny}, where
Ny, is the number of real poses in the training set. Then,
fake poses are generated using the following equation:

a’gfllz = ue@ + wé’? 4 )\Tpola,«(é), @
u~U(0,1),§ ~N(0,I);i € [M];j,k € [Ng]

where M is the number of fake poses to be generated, £ is
random noise in Cartesian coordinates, Tp,o1qr(+) transforms
poses in Cartesian coordinates to polar coordinates, and A
is a small scaling factor. In Equation.4, we introduced a
randomly sampled detection noise e/) scaled by u. In this
way, we ensure that the model focuses on learning the near-
manifold regions that cover the real detection noises.
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3.3. Distance definition

The computation of the distance of fake poses follows the
procedure similar to the previous work [21, 24], except for
the definition of distances. For a given fake pose x s, we
first find its K nearest real poses {:cg\’,)NH € [K]} using a
distance function dist : (X, X) — Y € R>(. A common
definition of dist is the geodesic distance weighted on each
Jjoint:

dist(xy,x2) =

J

1 1 2 2
ij\/(rj,l9§,1) — 12082 + (131057 — 1 2019)2,
j=1

®)

where w§0i7”t is the pre-defined weight for joint
i, (9§}1),9§-,21),rj71) is the jth element of x; and
(93(12) ,9;?2) ,7j,2) is the jth element of x,.  Another

possible option for polar coordinate representations is to
compute the angular and radial difference separately[4, 11].
Following this idea, we propose an arc-radius-based
distance:

dist(x1,x2) =

(2)5(2)

J
ij (rja- arccos(@fl)@g»g +0;7 ]72) +|rja — 12l
j=1

(6)

We experimentally show that Equation 6 is a better option
than Equation 5 for polar coordinate representations (see
Section 4.5 ). After the K-nearest real poses {:Bgf,)N|i €
[K]} are identified with dist(-), we compute the distance-
weighted mean pose as the prior pose of  as:

K ose (1
Tprior = D imq Wi wg\l)Nﬂ
POSS —
(1= dist(@ i @)y )/ Sy dist(@ g, 2y )/ (K = 1),

(N
and re-calculate the distance dist(x k> Tprior) as the dis-
tance of x sy, to the manifold.

3.4. Batch projection augmented training

Training with only supervision from the distance of
real/fake poses is not sufficiently effective when the train-
ing data are small, so we introduce batch projection-based
data augmentation to enhance the training process. We gen-
erate a new sample m?‘,’c from a fake pose x i, by gradient
projection, which is similar to [31]:

e =xp— ") VI (). ®)

This projection process is performed on the whole batch
B € X for specific iterations (IN*?) during each training



epoch, where each batch consists of both real and fake sam-
ples, ie. B = {Bg,By;}. Once a sample is projected
close to the manifold (determined with a threshold 7), this
sample will be excluded from the batch for the following
projections. This iterative batch sample projection process
supervises the model to better learn the fields from a fake
pose sample to the manifold surface. The training process
with batch projection data augmentation is summarized in
Algorithm 1.

Algorithm 1 Batch Projection Augmented Training

Require: Training data (X,Y), model f"¥(.), learning
rate 1), projection iterations N7, threshold 7
Ensure: Updated model parameters €
1: for each training epoch do

2: for each batch B = {By;, By} C X do
3 forn = 1to N*? do
4: Update Bfk — Bfk — fndf(Bfk) .
V4 (By)
5: for each x s, € Byy do
6: if 79 (x ) < 7 then
7 Remove x f;, from future projections
8: break
9: end if
10: end for
11: end for
12: Compute loss and update model 6
13: end for
14: end for

15: return Updated parameters 6

3.5. Pose correction process

We adapt the method in [24] to correct 2D poses with a
trained NDF pose prior. Given an erroneous 2D pose esti-
mate in Cartesian coordinate x4}’", by setting x4} learn-
able while the parameters of the NDF pose prior fixed, we
use the following loss function to correct the pose:

Leorr = fndf (Tpolar(m(}:“c]bgrt))’ )]

The correction iteration ends when the output distance of
f ndf hecomes smaller than a threshold, which is determined
using the validation set.

4. Experimental results

In this section, we first introduce the dataset and metric
used for evaluating polar coordinate based 2D pose NDF
prior (see Section 4.1). Then, we describe the implemen-
tation details of the experiments in Section 4.2. There-
after, we demonstrate the main results of pose correction
with the trained prior (Section 4.3), as well as a more de-
tailed inspection into the joint-wise performance (Section
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Data set No. of sequences No. of poses
16 (full) 1249
Training 8 (half) 638
4 (quarter) 280
Validation 4 315
Test 6 441
Total 26 2005

Table 1. Summary of data size and data splits.

4.4). Finally, we performed ablation studies on the proposed
method in Section 4.5.

4.1. Dataset and metrics

We evaluated the proposed pose prior using the long jump
dataset introduced by Gan et al. [9]. The dataset comprises
26 annotated clips of long jump performances by 22 athletes
(11 men and 11 women), captured from broadcast footage
of two World Championships. Each clip is recorded at a
resolution of 19201080 and a frame rate of 25 frames per
second. Ground-truth 2D pose annotations and foot—ground
contact labels are provided. Using these contact flags, we
segmented each clip to retain only the running and take-off
phases where pose detection errors are most prevalent. In
addition to the ground-truth annotations, we generated pose
estimates using three state-of-the-art HPE models: Alpha-
Pose [7], HRNet [23], and ViTPose [27], all applied with
corrected bounding boxes detected by YOLOV6 [15] to im-
prove input consistency.

Since the original dataset in [9] does not include
a predefined split, we manually defined a custom
train—validation—test partition. Among the 26 long jump se-
quences, 6 sequences were randomly selected for the test
set, 4 sequences for the validation set, and the remaining
16 sequences for training. From the training set, a subset
of 8 sequences was selected to form the half-training set,
and 4 sequences from that subset were further chosen as the
quarter-training set. The total number of frames and pose
annotations for each split is summarized in Table 1.

We use Percentage of Correct Keypoints (PCK) as the
evaluation metric in our experiments. The PCK metric in-
volves a threshold ¢, which defines the reference distance as
t times the distance between the left shoulder and the right
hip. A predicted joint is considered correct if its distance to
the ground-truth joint is less than or equal to this reference
distance. We evaluate performance at thresholds of ¢ = 0.1,
0.2, and 0.5. According to [17], a threshold of 0.1 approxi-
mately corresponds to a positional tolerance of 6 cm.

4.2. Implementation details

The data were preprocessed to train the NDF pose prior.
The experiments are primarily based on pose estimations
from ViTPose [27], HRNet [23], and AlphaPose [7]. The



pose skeleton definitions for ViTPose and HRNet follow the
COCO WholeBody format [12], while AlphaPose uses the
Halpe26 format [7]. These skeletons were converted to a
17-keypoint format, consistent with the definition in [10].
The 2D poses were normalized such that all poses have unit
height and their hip joints aligned at the origin.

For the training and validation sequences, we applied
horizontal flipping and interpolation with a scaling factor
of 5. We then generated 50 times more fake poses than the
number of ground-truth poses, using the method described
in Section 3.2. These poses were subsequently transformed
into either polar coordinates or angular coordinates (as in
[21], for ablation studies). The distances between poses
were computed using the algorithm detailed in Section 3.3.
For each fake pose, we used FAISS [13] to retrieve its 3
nearest-neighbor ground-truth poses for distance calcula-
tion.

We trained the NDF model using the Adam optimizer
[14] with a learning rate of 0.0001. We assigned equal
weights to all loss components in Equation 3. Batch pro-
jection was conducted for 20 iterations per epoch across 20
total epochs. For comparison, when batch projection was
not used, the model was trained for 400 epochs.

Pose correction on the test set was also performed using
the Adam optimizer with a learning rate of 0.0001. During
correction, each pose was refined over 100 iterations, or un-
til the predicted distance from the NDF pose prior dropped
below a threshold determined on the validation set.

4.3. Overall evaluation

We conducted pose correction experiments using the trained
NDF pose prior on the pose detections produced by Alpha-
Pose [7], HRNet [23], and ViTPose [27], respectively. The
main results are presented in Table 2. The findings indicate
that the NDF pose prior substantially enhanced joint detec-
tion accuracy.

Evaluation of the raw pose detections reveals that the
performances of the three models vary considerably. In
general, ViTPose achieves the highest accuracy, while
AlphaPose performs the worst under coarser thresholds
(PCK@0.2 and PCK@0.5), and HRNet exhibits the low-
est accuracy under stricter thresholds (PCK@0.05 and
PCK@0.1).

The NDF pose prior consistently improved accuracy
across all cases, demonstrating the method’s effective-
ness and robustness. When comparing models trained on
datasets of different sizes, although a larger training set
yielded slightly better performance, the improvement mar-
gins remained modest. These results suggest that the pro-
posed approach enables the model to learn effectively from
small datasets without significant performance degradation.
Despite the improved accuracy compared to raw detections,
the overall gain is relatively limited. We attribute this pri-
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marily to convergence issues in the model, which are further
discussed in Section 4.6.

4.4. Joint-wise correction

To inspect the pose correction results in greater detail, we
conducted a joint-wise performance analysis, as shown in
Figure 3. The mean PCK@0.05, 0.1, and 0.2 values per
joint across 50 correction iterations are plotted. Each sub-
plot contains 16 curves, each corresponding to a specific
joint. At the PCK@0.05 threshold, the most effectively cor-
rected joints include RShoulder (right shoulder), LShoul-
der (left shoulder), and Nose, while joints such as Head,
Thorax, RAnkle (right ankle), and LAnkle (left ankle) ex-
hibit substantial errors that are not well corrected. At the
PCK@0.1 level, Head, RAnkle, and LAnkle remain the
most error-prone joints, with only the Head showing sig-
nificant improvement during correction. At the PCK@0.2
threshold, LWrist (left wrist) and RWrist (right wrist) show
large initial errors with minimal improvement, whereas
REIbow (right elbow) and LEIbow (left elbow) demonstrate
notable error reduction over iterations. These observations
suggest that joints exhibiting less variation in motion (i.e.,
smaller movement ranges) are corrected more effectively by
the NDF pose prior. In contrast, joints with greater motion
complexity, such as wrists and ankles, are more challenging
to correct. This indicates that additional training data, par-
ticularly with a wider range of motion patterns, may help
improve the model’s ability to refine such joints more accu-
rately.

4.5. Ablation studies

To examine the individual contributions of our proposed
components, we conducted a series of ablation studies.
Specifically, we focused on four key aspects of our method:
(1) the polar coordinate representation, (2) the batch
projection-based data augmentation, (3) the arc-radius dis-
tance metric, and (4) the gradient loss term defined in Equa-
tion 2. To this end, we performed experiments across five
different configurations to isolate the impact of each com-
ponent:

* Polar baseline: This baseline setting uses the polar
coordinate-based representation for 2D poses. The dis-
tances of fake poses are defined using the arc-radius dis-
tance, as described in Equation 6. The model is trained
using the batch projection-based data augmentation pro-
cess with both distance-related loss and gradient-related
loss.

Angular baseline: This baseline setting follows the an-
gular representation as described in [21]. The distances
of fake poses are defined using the angular distance. The
model is trained using both batch projection-based data
augmentation and gradient-related loss.

Polar w/o bp: This setting is similar to the polar base-



Model Method PCK@0.05 PCK@(0.1 PCK@0.2 PCK®@O0.5
AlphaPose raw 44 .88 79.86 91.32 97.11
full 45.11 80.10 91.62 97.13
half 45.08 80.22 91.56 97.13
quarter 44.94 80.10 91.57 97.12
HRNet raw 41.18 75.08 94.12 98.05
full 41.39 76.35 94.32 98.12
half 41.48 76.20 94.37 98.08
quarter 41.60 76.36 94.30 98.13
ViTPose raw 51.18 88.62 98.07 99.47
full 51.78 90.52 98.19 99.48
half 51.35 90.52 98.15 99.48
quarter 51.95 90.21 98.20 99.49

Table 2. Evaluation of the pose correction performance using the trained pose prior. In the ’Method’ column, raw refers to the uncorrected
pose estimations obtained directly from the models listed in the first column. Full, half, and quarter indicate the respective proportions of
the training set (as defined in Table 1) used to train the pose prior model.

line, except that batch projection augmentation is not ap-
plied during training. To compensate for this, the model
is trained for additional epochs until no further improve-
ment is observed on the validation set.

Polar w/o grad. loss: This setting is similar to the polar
baseline, except that the gradient loss term is excluded
during training.

Polar w/o AR. dist.: This setting is similar to the polar
baseline, except that the distances of the fake poses are
defined using the geodesic distance (Equation 5).

The ablation study is conducted on pose detections from
AlphaPose, using three PCK metrics. The results are sum-
marized in Table 3. The polar baseline achieves the high-
est accuracy in PCK@0.2, ranks second in PCK@0.1, with
only a 0.01% lower accuracy than the best, and is third in
PCK@0.05. Therefore, the polar baseline demonstrates the
best overall performance.

By comparing the polar baseline with the angular base-
line, we observe that the polar representation offers slightly
better performance. The results from ’Polar w/o bpj’ in-
dicate that the batch sample projection plays a key role
in enhancing model performance. The ’Polar w/o grad.
loss’ yields the lowest performance across all three met-
rics, suggesting that this loss term significantly influences
the learning of a robust NDF prior. Lastly, the *Polar w/o
AR dist.” achieves the second-best accuracy in PCK@0.05
and PCK@0.2, demonstrating that while the geodesic dis-
tance performs slightly worse than the proposed arc-radius
distance, the difference is not substantial.

4.6. Further studies

We conducted an additional analysis to evaluate the conver-
gence of the pose prior. As shown in Figure 3, the accuracy
of some joints decreases over iterations, suggesting that the
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Setting PCK@0.05 PCK@(0.1 PCK@0.2
Polar baseline 45.11 80.10 91.62
Angular baseline 44.96 80.11 91.53
Polar w/o bp 45.20 79.99 91.45
Polar w/o grad. loss 4491 80.02 91.40
Polar w/o AR. dist. 45.15 80.06 91.58

Table 3. Ablation studies on AlphaPose detections

Model Method PCK@0.05 PCK@0.1
AlphaPose baseline 45.11 80.10
opt. converged 50.31 82.05
HRNet baseline 41.39 76.35
opt. converged 46.03 79.33
ViTPose baseline 51.78 90.52
opt. converged 57.06 92.34

Table 4. Assessment of the convergence behavior of the NDF pose
prior. Baseline performances are compared with the average of
the highest accuracy achieved for each pose during the correction
process, reported as opt. converged in the table.

manifold learned by the NDF pose prior did not fully con-
verge. In this analysis, we compare the baseline perfor-
mance with the average of the highest accuracy achieved for
each pose sample using the same NDF pose prior. The re-
sults presented in Table 4 demonstrate that while the model
achieves significantly improved pose corrections during the
refinement process, it does not consistently converge to the
optimal correction. This indicates that even higher perfor-
mance could be attained if the convergence issue were ef-
fectively addressed.
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Figure 3. Mean PCK per joint over 50 iterations.

5. Discussions and conclusions

In this work, we proposed a polar coordinate-based repre-
sentation for learning 2D pose prior with the neural distance
field. To facilitate the training of the pose prior, we also pro-
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posed gradient loss term and an arc-radius distance for polar
coordinate representations. To enable model training with
small datasets, we proposed a data augmentation method
to generate new sample batches by gradient-based projec-
tion. The experimental results showed a consistency im-
provement of the pose key point accuracy, regardless of the
source model for the pose estimations. We also show that
the model could be trained with less than a quarter of the
original training data (280 poses out of 1249 poses) without
a big sacrifice of performance.

Despite the effectiveness and robustness of the pro-
posed method, there are still two major issues. The first
is that the model tends to be less capable of correct-
ing the large motion joints (wrists and ankles), which
could be caused by insufficiency of data varieties. More-
over, currently, the model still has difficulty with conver-
gence, which greatly hinders the performance. This arti-
cle shows that the model has potential to achieve a much
better result if the convergence issue were properly re-
solved.
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