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Abstract. Reasoning about actions, planning in open-ended learn-
ing requires a hierarchical abstractions of action models and benefits
from the use of symbolic methods for goal representation as they
structure knowledge for efficient and transferable learning. However,
the existing Hierarchical Reinforcement Learning (HRL) approaches
relying on symbolic reasoning are often limited as they require a
manual goal representation. A symbolic goal representation must
preserve information about the environment dynamics. We propose
an automatic subgoal discovery via an emergent representation that
abstracts (i.e., groups together) sets of environment states that have
similar roles in the task, using formal verification methods. We create
a HRL algorithm that learns online this representation along with the
policies. We show on navigation tasks that the learned representation
is interpretable and results in data efficiency.

1 Introduction

As robots stepping out of factories need to learn in open-ended high-
dimensional sensorimotor spaces, symbol emergence is key for al-
lowing symbolic reasoning, compositionality, hierarchical organisa-
tion of the knowledge, etc. Sensorimotor symbol emergence thus is
key to scaling up primitive actions into complex actions for open-
ended learning, using compositionality [6] and hierarchy [2].

Action hierarchies are the core idea of Hierarchical Reinforcement
Learning (HRL) that decomposes a task into easier subtasks. In par-
ticular, in Feudal HRL [1] a high-level agent selects subgoals that a
low-level agent learns to achieve. The performance of Feudal HRL
depends on the "hierarchical division of the available state space"
[1], the representation of the goals that the high level agent uses to
decompose a task. Yet, only few algorithms learn it automatically
[8], while others either use directly the state space [7] or manually
provide a representation [4, 11]. In this research, we tackle the prob-
lem of learning automatically, while learning the policy, a discrete
interpretable goal representation from continuous observations that
expresses the task structure for data-efficiency.

We introduced in [9, 10] a novel goal space representation for
a feudal HRL algorithm, a hierarchical abstraction of action mod-
els combining reinforcement learning and formal methods. In [10],
we proposed a novel three-layer HRL algorithm, named Spatio-
Temporal Abstraction via Reachability (STAR), that learns the goal
space abstraction through reachability analysis. Thus, STAR ex-
ploits an emergent discrete representation of the goal space, to
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Figure 1: In this maze, the transition starting from a state in GGy for
k steps may reach both Go and G1. Gy is thus split into two regions
where all the states from G, can reach G1 and the states in G don’t.

be used more easily for task composition into sequential tasks.

2 Methodology

STAR uses as framework, a goal-conditioned Markov Decision Pro-
cess (S, A, P,rest), where S C R™ is a continuous state space, A is
an action space, P(s¢+1]st, at) is a probabilistic transition function,
and r.;+ is a parameterised reward function, defined as the negative
distance to the task goal g* € S, i.e rexi(s,g") = —||g" — s]|2-
The multi-task reinforcement learning problem consists in learning
a goal conditioned policy 7 to sample at each time step ¢ an action
a ~ m(st | g*), so as to maximize the expected cumulative reward.
The spatial goal abstraction is modeled by a set-based abstraction
defined by a function A" : & — 2° that maps concrete states to sets
of states (i.e., Vs € S, N'(s) C S). We write G to refer to the range
of the abstraction AV, which is intuitively the abstract goal space.

STAR learns, at the same time, a spatial goal abstraction A/ and
policies at multiple time scales. The STAR algorithm, shown in Fig-
ure 2, has two main components: a 3-levels Feudal HRL algorithm
(enclosed in the red dashed lines); and an abstraction refinement
component (shown in the blue solid lines). STAR runs the Feudal
HRL algorithm and the abstraction refinement in a feedback loop,
refining the abstraction V" at the end of every learning episode.

Our work presents the following contributions:

1. A novel Feudal HRL algorithm, STAR, to learn online (Fig. 2) with

the three RL agents :

(a) Commander: the highest-level agent learns the policy mcomm @ S X
S — @ that is a goal-conditioned on g* and samples an abstract
goal G € G that should help to reach the task goal g* from the
current agent’s state (Gtx ~ Tcomm(St, g%)).

(b) Tutor: the mid-level agent is conditioned by the Commander goal
G. It learns the policy 7y : S X G — S and picks subgoals in
the state space (gi+1 ~ Tru(st, Ge+k)).



Sao Mai Nguyen, Online Learning a Symbolic Abstraction of Actions in Hierarchical RL with Formal Methods, Workshop
ActSynt@ECAI2024.

Commander
TComm : 8§ X 8 := G

Environment

| Refinement | |

Controller ' o ‘ o o
Teont 1 S X8 1= A ! s u s .
st acA - ) ’ )

1M Timesteps 2M Timesteps

3 Timesteps

(a) Ant Maze Envi- (b) Learned Representation

Figure 2: Architecture of STAR. STAR’s inputs are the initial state
s0, the task goal ¢g*, and an initial abstraction Ny. STAR runs a
Feudal HRL algorithm (dashed red block) and an abstraction refine-
ment (blue box). The solid red blocks show the HRL agents (Com-
mander, Tutor, Controller). The agents run at different timescales
(k > 1 > 1), shown with the solid, dashed, and dotted lines carrying
the feedback from the environment to the agents. The Refinement
uses as inputs the past episodes (D) and a the list of abstract goals
(&) visited during the last episode, and outputs an abstraction.

(¢) Controller: the low-level policy mcone : S X S — A is goal-
conditioned by the Tutor’s subgoal g and samples actions to reach
given goal (a ~ Tcont (8¢, ge+1))-

2. An emergent symbolic representation of the environment, based on
reachability analysis. Each symbol representing a region of the state
space, we estimate the k-step reachability of the forward model from
each region. Technically, we compute an over-approximation of the
image of the forward model with the Ai2 [3] tool. We refine the repre-
sentation by splitting the regions online, so that the partition satisfies
the pairwise reachability property (Fig. 1). We provide a theoretical
motivation for using reachability-aware goal representations, show-
ing convergence to a reachability-aware abstraction after applying a
finite number of refinements, and showing a guarantee of a subop-
timality bound for the converged policy. Compared to the optimal
policy, the policy learned on the abstraction has a near optimal value
Vs (86) = Vaspr| < U(e,4,7y)|, where U is a function of +y the dis-
count factor, € a bound on reward values, and ¢ the time step index.

. Empirical results showing that STAR successfully combines both
temporal and spatial abstraction for more efficient learning, and that
the reachability-aware abstraction scales to tasks with more complex
dynamics in Ant environments (Fig. 3).

3 Experimental Results

Our evaluation in [10] shows superior success rate of STAR com-
pared to the state of the art [11, 5, 7].

We examine the abstraction learned by STAR’s Commander agent
at different timesteps during learning when solving the Ant Maze
(Fig. 3a). Fig. 3b shows how STAR gradually refines the goal ab-
straction to identify successful trajectories in the environment. Pro-
gressively, the ant explores trajectories leading to the goal of the task.
Additionally, the frequency of visiting goals in the difficult areas of
the maze (e.g., the tight corners) is higher, and these goals are even-
tually refined in the training, fitting with the configuration of the ob-
stacles. STAR learns a more precise abstraction in bottleneck areas
where only a few subset of states manage to reach the next goal.

We evaluate GARA [9] and examine how RL can combine with
planning on the 2 Paths Maze configuration (Fig. 4a). In such con-
figuration there are two ways to solve the maze: from the starting
position the agent can either take the upper path, which is harder to
train a low-level policy for, or take the narrow, harder to discover,
shorter path at the bottom. The obtained subgoal representation can
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Figure 3: Ant Maze: in this task, the ant must navigate a *>’-shaped
maze to reach the exit positioned at the top left. Learned Abstrac-
tion: Frequency of goals visited by the Commander when evaluating
a policy learned after 1M, 2M, and 3M timesteps (averaged over 5
different evaluations with 500 maximum timesteps). The subdivision
of the mazes represent (abstract) goals. The color gradient represents
the frequency of visits of each goal; Grey areas, the obstacles.

be used for planning : the graph in Fig. 4b shows the connected tran-
sitions in the learned partitions. Our hierarchical abstraction of action
models can be used for both planning and RL.
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(a) Subgoals decompo- (b) Extracted graph representing the transitions
sition between regions

Figure 4: Learned representation of GARA on the 2 Paths Maze and
the planning inferred inferred as a graph between sugoal regions.



