
Open the Chests: An environment for Activity
Recognition and Sequential Decision Problems
Using Temporal Logic
Ivelina Stoyanova !

U2IS, ENSTA Paris, Institut Polytechnique de Paris, France
THALES, France

Nicolas Museux !

THALES, France

Sao Mai Nguyen !

U2IS, ENSTA Paris, Institut Polytechnique de Paris, France

David Filliat !

U2IS, ENSTA Paris, Institut Polytechnique de Paris, France

Abstract
This article presents Open the Chests, a novel benchmark environment designed for simulating
and testing activity recognition and reactive decision-making algorithms. By leveraging temporal
logic, Open the Chests offers a dynamic, event-driven simulation platform that illustrates the
complexities of real-world systems. The environment contains multiple chests, each representing an
activity pattern that an interacting agent must identify and respond to by pressing a corresponding
button. The agent must analyze sequences of asynchronous events generated by the environment
to recognize these patterns and make informed decisions. With the aim of theoretically grounding
the environment, the Activity-Based Markov Decision Process (AB-MDP) is defined, allowing to
model the context-dependent interaction with activities. Our goal is to propose a robust tool for the
development, testing, and bench-marking of algorithms that is illustrative of realistic scenarios and
allows for the isolation of specific complexities in event-driven environments.

2012 ACM Subject Classification Computing methodologies → Simulation environments

Keywords and phrases Event-Based Decision Making, Activity Recognition, Temporal Logic, Re-
inforcement Learning, Dynamic Systems, Complex Event Processing, Benchmark Environment,
Real-Time Simulation

Supplementary Material Software (Source Code): Open The Chests

1 Introduction

The emergence of smart technologies and automated information processing has generated
an increasing interest in the fields of activity recognition [17, 8] and sequential event-based
decision making [52, 12]. These fields are characterised by the identification and interpretation
of behaviours as they occur and the optimisation of subsequent choices of reaction. They
allow multiple applications ranging from monitoring and assisting in smart environments
to enhance user convenience and safety [43, 13, 53], to automating cyber-security protocols
for real time threat detection and response [15, 22, 18], and applying control in industrial
settings to improve operational efficiency. However, the development of robust and reliable
models for these domains has been challenged by the inherent complexity of their associated
environments and the limited availability of suitable test-beds for evaluation [9, 33, 47].

Environments in these fields are typically characterised by multiple interconnected activ-
ities evolving concurrently over time, observable indirectly through sensors and detection
mechanisms. They often exhibit complex dynamics [44, 25], where activities are defined as
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Figure 1 Overview of the Open The Chests environment. The figure shows the event stream
being generated, the observation of events on the screen, and the corresponding interactions with
chests based on significant sequence detection.

significant patterns of observations characterized by complex temporal relationships and inter-
dependencies. In the case of the event-driven paradigm [11, 9], observations are processed in
order to extract significant changes in the environment under the form of data instances, also
referred to as events. These events arrive asynchronously and provide temporal and attribute
information on the occurred changes, constituting an event stream. The goal of the system
interacting with the environment is to identify activities by analysing event signatures and
selecting adapted reactions.

A key challenge for solutions and simulations lies in capturing the contextual and history-
dependent nature of behaviors present in the event stream [5, 37, 42]. The significance
and interpretation of an event are highly dependent on its surrounding context and the
sequence of prior events. Additional challenges include heterogeneous data sources, complex
temporal inter-dependencies [40], and uncertainty [2], which make it difficult to develop
robust and adaptable systems. These challenges also complicate the process of obtaining
large-scale datasets and conducting controlled simulations, thereby hindering the advancement
of solutions [25, 20, 55]. Collecting and annotating datasets is expensive, time-consuming,
and often impractical due to the vast number of scenario configurations and complexity levels
required. Capturing the full range of variability, uncertainty, and asynchrony in event-driven
environments often necessitates multiple datasets, further complicating the process. On the
other hand, simulators must balance application specificity and simplicity. While a highly
detailed, application-specific simulator might closely mimic real-world conditions, it can also
make it difficult to isolate and evaluate specific complexities objectively. Conversely, overly
simplified simulations may miss critical nuances, leading to gaps in testing.

To address this issue, we introduce Open The Chests 1, illustrated in Figure 1, a novel
reinforcement learning environment that simulates a gamified scenario of activity recognition
and sequential decision-making. Modeled after popular Reinforcement learning environments
[51], the environment is designed to represent the complexities of real-world scenarios,
where the significance of observations and appropriate reactions are highly dependent on
temporal context and the history of events. Its configurable nature allows for multiple
levels of complexity, enabling users to isolate specific challenges and systematically evaluate
various aspects of decision-making processes. This article details the core complexities of
the environment, formalizes the main elements of the problem, and introduces Open The

1 https://github.com/ThalesGroup/open-the-chests
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Chests as a versatile tool for such evaluations.

2 Background and Related Work

Multiple domains developing solutions to the challenges of reactive decision-making could
benefit from the usage of standardized benchmarks, particularly in event-driven environments.
Complex Event Processing (CEP) and Complex Event Recognition (CER) systems [36, 14, 24]
are methods designed to identify and recognize intricate patterns within streams of events
using predefined rules. Examining complexities such as uncertainty, noise, and varying
context lengths could be crucial in assessing the robustness and reliability of these systems
in diverse scenarios. Similarly, when extracting rules and patterns for these domains [19, 32],
exploring how the accuracy and interpretability of results vary with scenario complexity could
provide valuable insights into the adaptability of these approaches. For the temporal interval
pattern mining community [38, 41, 6], comparisons across algorithms could be enriched by
considering their computational efficiency and limits, especially in the context of standardized
benchmarks. Other approaches to monitoring activities involve using probabilistic methods,
often combined with logic-driven techniques [26, 2]. These methods typically estimate
the likelihood of events, and exploring their adaptability in less predictable contexts can
provide insights into their ability to maintain accuracy under varying conditions. Finally,
Reinforcement Learning [48], which is showing growing interest in real-world scenarios [20],
would gain from frameworks that allow thorough testing of long-term, contextual dependencies
and delayed rewards.

Current benchmarks and datasets for event-driven environments typically fall into two
distinct categories, focusing either on the classification of activities [54] or sequential decision-
making [51]. Classification methods, which involve identifying and categorizing specific
patterns of behavior or events, are often driven by deep learning techniques or knowledge-
based methods [12, 8]. Several datasets are available for these purposes [8, 4], offering a
range of scenarios for recognition. However, while effective in controlled, static settings, these
classification methods often struggle to adapt to the dynamic nature of realistic environments,
as they typically do not account for the impact of interaction. Conversely, sequential decision-
making frameworks, such as those in Reinforcement Learning, focus on optimizing decisions
based on the system’s current state, making them well-suited for dynamic environments.
Despite their strengths, these methods often rely on simplified environmental models, which
can limit their real-world applicability [9]. Specifically, many existing simulators fail to account
for the complexities of history dependence, context dependence, and inter-dependencies within
the environment. Active research is working to address these challenges by incorporating
more complex environmental features into these frameworks [7, 34]. These benchmarks
challenge agents with higher-level tasks, requiring memory and goal abstraction. However, to
our knowledge, none of them specifically address the task of activity recognition, motivating
our development of the Open The Chests environment.

3 Formalising Activities using Temporal Logic and Attribute Filters

The development of robust algorithms and reliable simulations for event-driven environments
requires the precise formalization of events, activities, and interactions. This formalization
provides a foundation for understanding system dynamics and guiding the construction of
the environment. In particular, activities are critical constructs in reactive decision-making
systems, serving as the basis for identifying relevant scenarios and triggering appropriate
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responses. By integrating both temporal and attribute constraints on the event stream, activ-
ities enable the precise encoding of complex semantics as high-level abstractions, capturing
meaningful patterns of behavior over time.

3.1 Definition of Events
Events are the fundamental building blocks of the environment, representing significant
changes that occur over time. Formally, an event e can be represented as a tuple:

e = (sym,Attr, tstart, tend, )

where:

sym is a symbolic identifier that categorizes the type of event, facilitating its recognition
and interpretation within the system.
Attr = {attr1, . . . attrn} represent a set of attributes that provide additional information
about the event. These attributes can include, but are not limited to, spatial coordinates,
intensity levels, source identifiers, and other domain-specific parameters.
tstart and tend denote the timestamps marking the initiation and conclusion of the event,
respectively. These temporal markers are crucial for understanding the duration and
sequence of events.

Events arrive asynchronously and are processed to form a history, or event stream. It is
denoted as ht, where t represents the current discrete time step, or the number of the last
received event:

ht = 〈e1, e2, . . . , et〉

The temporal aspect of events allows for identifying relationships between them, enabling
the construction of higher-level abstractions. Attributes enrich event representation by
encoding domain-specific information, facilitating more sophisticated analysis and reasoning
about the state of the environment.

3.2 Temporal Relations between Events

Figure 2 Allen’s 13 temporal interval relations: before, after, meets, met-by, overlaps, overlapped-
by, starts, started-by, during, contains, finishes, finished-by, equal.

Encoding temporal relationships between events is a key aspect of an activity’s repres-
entation, capturing their relative order, duration, and overlaps. Various formalisms have
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been proposed for representing temporality, each with its own trade-offs in expressiveness
and computational complexity [16, 27]. For the Open The Chests environment, we leverage
Allen’s Interval Algebra [3] due to its expressivity in capturing temporal relations and its
established use in the activity recognition community [13, 39]. This algebra defines a set of
thirteen mutually exhaustive temporal relationships between two time intervals. As depicted
in Figure 2, each relation imposes a unique constraint on the start and end times of the
two considered events. Leveraging these concepts, we establish the temporal relation Tallen

between two events ei and ej :

Tallen(ei, ej) =
{
True, if ei.tstart, ei.tend, ej .tstart, ej .tend respect conditions.
False, otherwise

(1)

Each relation captures a specific temporal interaction between intervals, enabling the
precise modeling of complex temporal sequences. Specific Allen relations are denoted by
using subscripts such as Tbefore(ei, ej).

3.3 Attribute Filtering
In addition to temporal relationships, activities are characterized by dependencies between
event attributes. Specifically, recognizing an activity relies on recognizing the specific
attribute values associated with events. For example, in a smart-home scenario, the location
attribute may be crucial for identifying activities such as "cooking" or "watching TV". Thus,
the definition of an activity can be refined by imposing constraints on the attribute values of
its constituent events, introducing the notion of filtering. To formalize this, we define an
attribute filter function Fa that evaluates the relevance of an event’s attributes:

Fa(e) =
{
True, if the attributes of e satisfy the filter conditions.
False, otherwise

(2)

Comparing the attribute values of two events can also determine their relevance to the
same activity, which is crucial for accurately linking contextually connected events. For
instance, in a surveillance system, two events occurring in the same area might need to share
the same location attribute to accurately recognize a security breach or suspicious behavior.
To formalize this, we define a relative attribute filter function Fr that evaluates the relevance
of a pair of events’ attributes:

Fr(e1, e2) =
{
True, if the attributes of e1, e2 jointly satisfy the filter conditions.
False, otherwise

(3)

3.4 Composition and Definition of Activities
Formally, an activity A is a temporally-structured sequence of m events which follow specific
temporal and attribute relationships. The recognition of an activity is formalized by the
function RA, which combines these temporal and attribute relations to determine whether a
given set of events constitutes a recognized activity. This can be expressed as:

RA(e1, . . . , em) =
m∧

i=1
Fai(ei) ∧

m−1∧
i=1

n∧
j=i+1

Fr i,j(ei, ej) ∧
m−1∧
i=1

m∧
j=i+1

Talleni,j (ei, ej) (4)
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We assume that an environment is constituted of n activities {A1, . . . An} with corres-
ponding recognition functions {RA1 , . . . RAn

}.

4 Defining Interaction within the Environment

The interaction between the system and its environment evolves continuously. A stream
of events is presented to the agent, generated by an underlying set of activities which
prompt interaction. For realism, it is crucial to model not only the activities themselves
but also the impact of interactions on the environment. Specifically, the agent’s decisions
have meaningful effects on the state of the environment, creating a closed-loop dynamic
interaction. Traditionally, this decision-making process is modeled as a Markov Decision
Process (MDP) [23] or a Partially Observable Markov Decision Process (POMDP) [46].
However, these approaches often fall short in capturing the complexities of event-driven
environments, particularly those that exhibit rich contextual and historical dependencies
[44].

4.1 Challenges in Decision making and Modeling as an MDP

The challenges frameworks face can be categorized into three main areas:

State Space Complexity: The asynchronous and concurrent nature of activities, along
with their inter-dependencies, significantly expands the state space. Each activity, defined
by its events, attributes, and temporal dependencies, has multiple states of advancement.
With multiple activities occurring simultaneously in the environment, representing states
as the compounded relations of these activities becomes complex. The coupling of events
from different activities creates a multi-dimensional activity space, where the complexity
increases due to their inter-dependencies and overlapping temporal dynamics. The number
of possible event combinations and correlations grows exponentially with the number
of actors, activities, and attributes, complicating the transition function and leading to
modeling complexity [45, 35, 29].
Contextual and Historical Dependencies: The state of activities is not directly
observable by the agent, which must rely on the history of events to make inferences.
Because individual events cannot be fully understood without their associated temporal
and attribute relations, the agent is compelled to consider the entire event stream to
accurately infer the underlying activities. This process underscores the critical role of
context and history in determining the significance of events. The reliance on historical
context and continuous event streams breaks the Markov assumption, which assumes that
future states depend only on the current state and not on the sequence of past events
[5, 50].
Temporally-Structured Nature of Activities: Events and activities are inherently
dependent on time and structured in complex temporal patterns, rather than being
independent, instantaneous transitions. The temporal relations between events are crucial
for recognizing activities and must be specifically captured. This temporal structuring is
essential because activities often span multiple time steps and involve events that interact
over time. Therefore, enriched state representations that incorporate these temporal
dynamics are necessary to accurately reflect real-world scenarios and support effective
decision-making processes [44, 49].
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4.2 Defining an Activity-Based MDP
To address these limitations, we propose a novel formulation of the decision-making problem
in event-driven environments by building on the fundamentals of activity recognition. We
define the Activity-Based Markov Decision Process (AB-MDP), which integrates principles of
Activity Recognition within the Markov Decision Process framework. Similar to Contextual
Markov Decision Processes [28] and Dynamic Contextual Markov Decision Processes [50], the
state space in the AB-MDP is expanded to include not only the observable state information
but also additional contextual information. History dependence is captured by a contextual
variable that indicates whether an activity has been completed, conditioning rewards and
transitions. This contextual variable is latent to the agent, making it a special case of POMDP.
In this version of the AB-MDP, illustrated in Figure 3, we assume that interventions are
relevant only when activities have been completed. This simplification allows the model to
focus on the state of recognized activities rather than the entire event sequence.

Figure 3 Causal diagram depicting the dependencies in an AB-MDP. Green circles represent
unobserved variables. Here st and st+1 are the current and next states, ct and ct+1 are the current
and next context variables, ht and ht+1 are the current and next histories and at is the applied
action.

I Definition 1 (Activity-Based MDP). Supposing an environment is defined by the presence
of n activities, an AB-MDP is defined by the tuple 〈S,E,C,A, T,R〉

S is the observable space of the environment, constituted by any observable information
outside of events.
E is the space of events observations.
C is a contextual vector of size n. Each element ci indicates the completion status of
the i-th activity, with ci ∈ {True,False}. It is latent to the learning agent and must be
inferred from the history of observations.
A is the finite action space defined by the possible responses or reactions the system can
take.
T is a context dependent transition function defined as T (st, at, ct, st+1) = Pr(st+1 |
st, at, ct), with st, st+1 ∈ S, at ∈ A and ct ∈ C. The transition is influenced by the
actions taken and the currently active activities.
R is the reward function defined as R(s, a, c) = r, which evaluates the success of actions
in reacting to recognized activities.

I Example 2. To illustrate the components of the AB-MDP, consider the example of an
autonomous drone monitoring a restricted area. The state at each step st represents the
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drone’s current position, battery level, and basic environmental data like wind speed. In
contrast, events et capture instantaneous occurrences such as detecting movement near a
perimeter fence, the activation of a door sensor, or an alarm signal triggered by unauthorized
entry. The context variable ct indicates whether specific activities, like unauthorized entry,
have been completed, while the action at might involve the drone adjusting its position,
zooming its camera, or sending an alert to security personnel.

At each time step t, the contextual variable ci specifies whether there exists a subset
of events {e1, . . . , em} in the event history ht ∈ H that satisfy the predicate conditions for
activity i.

ci =
{
True, {e1, . . . , em} ⊂ ht|RAi

(e1, . . . , em) = True
False, otherwise

(5)

This means that the next context occurs with a probability dependent on the history of
events. Since this variable is latent to an observer of the environment, its values must be
inferred from the observed events.

5 Description of the Open the Chests Environment

The Open The Chests environment implements an AB-MDP to simulate the complexities
of real-world event-driven systems, providing a configurable platform for testing activity
recognition and reactive decision-making algorithms. The environment models a scenario
where an agent interacts with a series of chests that can be opened based on specific, unknown
patterns of events. The agent’s primary goal is to recognize these patterns by processing
the observable event stream and deciding which buttons to press to open the appropriate
chest. The environment’s role is to generate events that respect the configured activities and
allow interaction with their corresponding chests. This setup illustrates the dynamic and
context-dependent nature of real-world systems, where recognizing event sequences allows
the agent to modify the environment.

5.1 Game Mechanics

(a) (b) (c)

Figure 4 The main elements of the Open The Chests environment: (a) boxes and their respective
states (active, ready, open); (b) event observations with their symbol, attributes (background
color, foreground color) and temporal information (start, end); (c) buttons for interacting with
chests to modify their state.

The Open the Chests environment consists of several key elements, each playing a
critical role in the simulation: chests, observations, buttons, and rewards. Figure 4 illustrates
how these elements are presented in the environment.
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Event Observations: Event observations are the event symbols, attributes and temporal
information presented to the agent. These observations form the event stream that
the agent must analyze to recognize patterns and make decisions. At each step, the
environment emits last occurred event (see Sec.5.2), generated according to the activities
present in the environment (see Sec.5.3).
Chests: Chests represent the activities present in the environment that the agent needs
to recognize and address. Each chest corresponds to a specific pattern of events within
the observable event stream. The state of chests is partially observable: the information
of whether a chest is open or active is known, while the information of a chest being ready
is hidden (see Sec.5.4).
Buttons: Buttons are the interactive elements associated with each chest representing
actions. Pressing the corresponding button allows opening the chest if the associated
pattern of events is present in the event history, i.e. if the chest is ready (see Sec.5.4).
Rewards: Rewards are the feedback which the environment provides to the agent based
on its actions. If the button is pressed at the correct time, the corresponding chest opens
and a positive reward is given; otherwise, a negative or no reward is received (see Sec.5.5).

The environment continuously generates events based on predefined activities until
all chests are recognized and opened. To solve this, the agent must monitor the event
stream history, detect patterns, and infer the latent context. Upon recognizing a pattern
corresponding to a chest activity, the agent must decide to press the appropriate button,
linking the pattern, chest, and action.

5.2 Event Observation and Interaction Time
Events are displayed as symbols with varying values, colors, and background colors, repres-
enting different types of detections in the environment (Figure 5). Each event also carries
continuous time information, indicating its start and end times. These events are presented
to the agent one by one upon completion, allowing the agent to make decisions based on
fully observed events. This approach ensures that the environment operates in discrete steps.
While the timeline of events is not directly visible to the agent, it is implicitly understood
through the sequence displayed on the observation screen. The environment allows for vari-
ation in event length during configuration, adding complexity and realism to the simulation.
This variability challenges the agent to adapt to different event durations, enhancing the
robustness of pattern recognition algorithms.

Figure 5 Possible
events symbols and their
attributes represented by
symbols and colors.

Figure 6 An event is communicated to the agent at its completion.

I Example 3. Consider an activity defined by two overlapping events, both marked with
the symbol C, as shown in the Figure 6. The activity recognition rule RA(e1, e2) =
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Fa(e1,C, green, yellow)∧Fa(e2,C, red, red)∧Tcontains(e1, e2) involves detecting event e1 with
the attributes C, green, and yellow, and event e2 with the attributes C, red, and red, while
maintaining the temporal relation Tcontains(e1, e2). Since the contains relation requires that
tende1

< tende2
, event e1 will be generated and communicated first, along with its specified

colors and timestamps.

5.3 Defining event patterns and generating events
When configuring event patterns for each chest, we use Temporal and Attribute relations as
defined in Equation 4. To facilitate the management of these relations, we use Höppner’s
matrix form [30] to transform them into a structured format, which makes it easier to check
for continuity and detect any contradictions. To handle event generalisation and simplify
the complexity of multiple concurrent activities, we represent patterns as memory-enriched
automata [31]. Their goal is to track both current and pending events, while storing relevant
past events that are needed for generation. During execution, the next event to generate is
thus selected with respect to all activities and their current execution step. Each activity
is configured to begin after a certain delay, which can be specified during its definition.
Additionally, Allen Relations can be parameterized to introduce varying delays between
events, adding complexity and realism to the simulation. Finally, empty filters can be defined,
allowing for variations in attributes during event generation.

Figure 7 An illustration of a
defined pattern and its associated
matrix representation.

INSTANTIATE
- name: e1

type: A
params:

fg: red
bg: blue

duration:
mu: 5
sigma: 2

- name: e2
type: C
params:

fg: blue
bg: yellow

duration:
mu: 6
sigma: 2

Figure 8 Defining the
events and attribute filters of
a two-event pattern.

RELATIONSHIP:
- type: after

events:
- e1
- e2

other:
gap_dist:

mu: 4
sigma: 1

Figure 9 Defining the rela-
tions of a two-event pattern.

I Example 4. To define a pattern consisting of two events where one occurs before the
other, and where the events are represented by symbols A and C, we start by specifying
their attributes and relations, as shown in Figures 8 and 9. We use the parameters mu and
sigma to define a normal distribution that will be used to sample the duration of events or
the time between events. In this case, the matrix representation of this pattern (Figure 7)
includes only one temporal relation between the two events.

Complexity is added to the environment by introducing noise and randomness into the
event stream, simulating some of the inherent uncertainty of real-world systems. Specifically,
patterns can be generated with varying degrees of noise, enabling the system to add events
to the stream that are unrelated to the execution of current activities.
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5.4 Chests and Buttons: Interaction and Box States
Chests represent activities in the environment, each with three binary state values: active,
ready, and open. At the start of the game, all chests are closed (not open). A chest becomes
active once it starts generating events that are observed in the event stream. When the
sequence of events is fully generated and present in the stream, the corresponding chest
becomes ready to open by pushing a button. If the button is pushed, the chest is marked as
open, its pattern is removed from the environment, and it stops generating further events. If
the button is not pushed, the pattern generation continues and eventually restarts. Until a
chest is opened, its associated pattern continues to repeat, providing the agent with multiple
opportunities to recognize and interact with the sequence. The active and open states
represent the observable part of the environment and are communicated to the agent with
each event observation. The ready state serves as the activity context, determining the
outcome of button actions.

Figure 10 The state transition graph of a single chest. A chest is initially active and not open.
Its transitions are conditioned by the pushing buttons and on its associated ready value.

I Example 5. Suppose that only one chest is defined in the environment using the activity
definitions in Example 3. Initially it is active and generates events one by one. Once both its
associated events have been observed it will pass to the state ready, meaning its associated
context variable c1 = True will indicate activity completion. If the button is correctly
pressed, the chest will open and no further events will be generated. Otherwise the chests is
deactivated and goes back to the active state after a delay. This transition is illustrated in
Figure 10.

5.5 Rewards
Reward is defined in terms of the number of correctly opened chests NCO, incorrectly opened
chests NIO, correctly unopened chests NCU , and incorrectly unopened chests NIU . These
notions are equivalent to true positives, true negatives, false positives, and false negatives,
respectively. The action at ∈ {True,False}n defines the chests the agent attempted to open
and the time at which the agent pressed the button corresponding to each chest. We use the
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vector ct ∈ {True,False}n to represent which of the chests were ready to open at time t. We
can thus define the following:

NCO = at ∧ ct meaning all correctly opened chests
NIO = at ∧ (¬ct) meaning all incorrectly attempted chests
NCU = (¬at) ∧ (¬ct) meaning all correctly unopened chests
NIU = (¬at) ∧ ct meaning all incorrectly unattempted chests

We define a reward for each type of chest: rCO, rIO, rCU , rIU , allowing us to calculate
the final reward r.

r = rCO ·NCO + rIO ·NIO + rCU ·NCU + rIU ·NIU

For the time being, we set the values rCO = 1, rIO = −1, rCU = 0, and rIU = −1.

6 Validation of the Open The Chests Environment

The goal of our validation was to ensure the proper execution of the OpenTheChests
environment and to establish performance baselines using two algorithms: Deep Q-Network
(DQN) and Deep Transformer Q-Network (DTQN) [21]. Successfully generating meaningful
and consistent results across both algorithms confirms that the environment functions as
intended, providing a reliable platform for testing and comparing different algorithms. This
validation also demonstrates the environment’s capability to effectively differentiate between
the performance and behavior of distinct decision-making approaches, ensuring its integration
with existing methods.

To achieve this, we configured three scenarios with varying levels of complexity. Each
configuration contained 5 chests but differed in the number of events per activity: 1, 8, and
16 events. The simplest configuration associates one unique event per chest, meaning it
doesn’t require additional temporal or context dependencies. Once the event is observed,
the expected response is to identify the appropriate chest and press its button. Conversely,
the environments with eight and sixteen events per chest require identifying sequences of
appropriate length as well as their respective attribute and temporal relations. To configure
these patterns, we randomly selected the corresponding number of event filters and Allen
temporal interval relations. Finally, the environment was configured with varying levels
of noise per activity, ranging from 0.1 to 0.3, meaning that a proportionate amount of
non-relevant events was generated alongside the activity patterns. Our evaluations is shown
in Figure 11, where each learning curve presents the success rate of the agents during training
across the three different environments. To asses the performance in both algorithms, we
measured the success rate in each scenario, reflecting the ability of agents to correctly identify
and interact with the appropriate chests. We utilized the rliable library [1] to calculate
the Interquartile Mean (IQM), which provides a robust measure of central tendency, along
with stratified bootstrap confidence intervals to capture the variability of the results across
five random seeds. These metrics were plotted over the course of training, allowing us to
observe the learning progress and stability of each algorithm in handling the varying levels
of complexity within the environments.

Both DQN and DTQN algorithms were successfully integrated with the environment
by leveraging the standardised gym framework. As expected, DQN performed poorly in
scenarios requiring historical context and complex temporal dependencies. The algorithm
struggled to effectively handle tasks that demanded memory of past events or intricate event
interd-ependencies, which are critical in the Open The Chests environment. DQN’s design,
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(a) DQN

(b) DTQN

Figure 11 Success rates of DTQN and DQN across three environments during training with 1,
8, and 16 events per activity. Each pattern was configured with a noise value between 0.1 and 0.3.
Values are measured across 5 random seeds.

optimized for simpler, state-based decisions, lacks the mechanisms necessary to process and
utilize long-term dependencies, leading to suboptimal performance in these context-sensitive
scenarios. Interestingly, we also observed struggles in simpler scenarios without history
dependence, likely due to the challenges posed by multiple parallel activities and the multi-
dimensional nature of the actions required. DTQN demonstrated superior performance,
especially in more complex scenarios, due to its ability to incorporate past observations. The
use of transformer architectures allows DTQN to maintain and utilize a memory of sequential
events, enabling it to make more informed decisions based on the historical context. However,



14 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)318(5:1–5:19). Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

as the scenarios became increasingly complex with longer contexts, DTQN’s performance
began to decline, likely due to limitations in the model’s parameter settings, such as the
fixed context window size, which may not fully capture extended dependencies, as well as
its capacity to effectively separate parallel activities. Further exploration of these methods,
particularly through the use of custom configurations to isolate specific complexities, would
allow for a better understanding of the algorithms’ limitations. This underscores the value
of the Open The Chests environment. Additionally, the lack of interpretability in both
algorithms remains an important consideration for future development, as it impacts their
practical applicability in real-world scenarios.

7 Conclusion and Perspectives

The OpenTheChests environment facilitates defining benchmarks of varying complexities,
depending on the number of chests and the complexity of their corresponding patterns.
Integrated with the gym [10] framework, it models dynamic, interactive scenarios where the
agent must recognize patterns of events and make timely decisions, illustrating real-world
system complexities. Through the integration of Activity-Based Markov Decision Processes
(AB-MDP), OpenTheChests simulates context-dependent, sequential decision-making tasks,
facilitating comprehensive testing and development of advanced algorithms.

Looking ahead, several enhancements are planned to further develop the capabilities of
OpenTheChests. These include:

Dependence Between Activities and Model Expansion: Introducing mechanisms
where activities can influence each other, creating more complex inter-dependencies and
richer scenarios for testing decision-making strategies. We aim to develop an advanced
AB-MDP that considers intermediate activity states.
Event Sharing Between Activities: Implementing various event consumption policies
that govern how events are shared or partitioned among concurrent activities, enabling
the exploration of different coordination strategies.
Advanced Attribute Relations: Developing more sophisticated attribute relations
that can span multiple events, enhancing the ability to model and recognize complex
patterns and dependencies.

Future research will focus on expanding the complexity of the OpenTheChests environment
and exploring its applications in various real-world scenarios. While initial results showed
good performance, both DQN and DTQN lacked interpretability. Further goals include
improving the interpretability of the algorithms, enabling clearer insights into decision-making
processes, and enhancing the overall robustness of the environment.
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A Example configuration

This appendix provides an example configuration for the Open The Chests environment,
illustrating how to set up chests with patterns of multiple events. The first step to configuring
the environment is to define a set of event types along with their foreground and background
colors. This is done by specifying the sets of all possible event types along with all possible
foreground and background colors, as follows:

Types = {A,B,C,D,E, F,G,H, I, J}
Background Colors = {red,blue, green, orange,pink}
Foreground Colors = {red,blue, green, orange,pink}

The next step would be to define activities using filters and Allen Relations. Below is an
example for one chest, showing how to specify the events and their temporal relations.
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Ractivity(e1, . . . , e8) =Fa1(e1,B,pink, orange)
∧ Fa(e2,D, red, green)
∧ Fa(e3,E, orange,blue)
∧ Fa(e4,G,blue,pink)
∧ Fa(e5,H, green, red)
∧ Fa(e6, I,pink, orange)
∧ Fa(e7, J, green,blue)
∧ Fa(e8,C, orange,pink)
∧ Fr(e2, e3, {4, 1})
∧ Fr(e4, e5, {5, 2})
∧ Fr(e7, e8, {3, 1})
∧ Tduring(e1, e2)
∧ Tafter(e2, e3)
∧ TmetBy(e3, e4)
∧ Tafter(e4, e5)
∧ Tduring(e5, e6)
∧ TmetBy(e6, e7)
∧ Tafter(e7, e8)

In this example, Fai(ei, type, fg,bg) specifies the type, foreground, and background colors
for each event ei. This means that during generation, only events that satisfy the provided
symbols and attributes will be selected. Relations like Tduring(e1, e2) and TmetBy(e6, e7)
guide the generation of the start and end times for the events e1 through e8, ensuring that
these events occur in a sequence that adheres to the specified temporal constraints. Finally
relative filters, like Fr(e2, e3, {4, 1}, allow us to define the relative distance between events
in relations like "before" and "after," which imply a gap between the events, with this gap
being determined by sampling from a normal distribution characterized by a mean of µ and
standard deviation σ. The temporal relations between events in this configuration can also
be summarized using a matrix of interval relations, as shown in Table 1.

e1 e2 e3 e4 e5 e6 e7 e8

e1 = d
e2 = >
e3 = mi
e4 = >
e5 = d
e6 = mi
e7 = >
e8 =

Table 1 Interval relation matrix representing the temporal relations between events e1 to e8 as
specified in the configuration.
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The defined pattern is then transformed into a memory-enriched automaton, where
each state corresponds to the generation of an event. Relevant temporal data, such as the
initialization time of the activity and past generated events, is stored in memory, ensuring
the consistent generation of complex event sequences.
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